Advertisement

Transactions of the Indian Institute of Metals

, Volume 68, Issue 6, pp 1023–1026 | Cite as

Effect of Input Power and Temperature on the Cavitation Intensity During the Ultrasonic Treatment of Molten Aluminium

  • I. TzanakisEmail author
  • G. S. B. Lebon
  • D. G. Eskin
  • K. Pericleous
Technical Paper

Abstract

Experimental results of ultrasonic processing of liquid aluminium with a 5 kW magnetostrictive transducer and a 20 mm titanium sonotrode excited at 17 kHz are reported in this study. A unique high-temperature cavitometer sensor, placed at various locations in the liquid melt, measured cavitation activity at various acoustic power levels and different temperature ranges. The highest cavitation intensity in the liquid bulk is achieved below the surface of the sonotrode, at the lowest temperature and with an applied power of 3.5 kW. This two-fold mechanism is related to (a) acoustic shielding and (b) the tendency of liquid aluminium to release hydrogen when the temperature drops, thus promoting multiple cavitation events. Understanding these mechanisms in liquid metals can result in a major breakthrough for the optimization of ultrasound applications to liquid metal processing.

Keywords

Ultrasonic treatment Metallic alloys Cavitation bubbles Frequency spectrum Acoustic pressure 

Notes

Acknowledgments

This work is performed within the Ultramelt Project supported by the EPSRC Grants EP/K005804/1 and EP/K00588X/1.

References

  1. 1.
    Leighton T G (ed) The Acoustic Bubble, Academic Press, London (1994).Google Scholar
  2. 2.
    Flannigan D G, Suslick K S, Nature 434 (2005) 52.CrossRefGoogle Scholar
  3. 3.
    Tzanakis I, Eskin D G, Georgoulas A, Fytanidis D Ultrason Sonochem 21 (2014) 866.CrossRefGoogle Scholar
  4. 4.
    Gedanken A, Ultrason Sonochem 11 (2004) 47.CrossRefGoogle Scholar
  5. 5.
    Eskin G I, Eskin D G Ultrasonic Treatment of Light Alloy Melts, Second Edition, CRC Press, BocaRaton (2014).Google Scholar
  6. 6.
    Komarov S, Oda K, Ishiwata Y, Dezhkunov N, Ultrason Sonochem 20 (2013) 754.CrossRefGoogle Scholar
  7. 7.
    Huang H, Shu D, Fu Y, Wang J, Sun B, Ultrason Sonochem 21 (2014) 1275.CrossRefGoogle Scholar
  8. 8.
    Tzanakis I, Hodnett M, Lebon B, Dezhkunov N, Eskin D G, J Sens Actuators A Phys (Under Review).Google Scholar
  9. 9.
    Rozenberg L D, in Powerful Ultrasonic Fields, Part VI Cavitation Region, Nauka, Moscow, p 221 (1968).Google Scholar
  10. 10.
    Xu W W et al. TMS2015 Annual Meeting Supplemental Proceedings, Wiley/TMS, Hoboken (NJ), p 61 (2015).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2015

Authors and Affiliations

  • I. Tzanakis
    • 1
    Email author
  • G. S. B. Lebon
    • 2
  • D. G. Eskin
    • 1
  • K. Pericleous
    • 2
  1. 1.Brunel Centre for Advanced Solidification Technology (BCAST)Brunel UniversityUxbridgeUK
  2. 2.Centre for Numerical Modelling and Process AnalysisUniversity of GreenwichLondonUK

Personalised recommendations