Review of Microstructure Evolution in Hypereutectic Al–Si Alloys and its Effect on Wear Properties

  • Vijeesh V
  • K. Narayan PrabhuEmail author
Review Paper


Al–Si alloys with silicon content more than 13 % are termed as hypereutectic alloys. In recent years, these alloys have drawn the attention of researchers due to their ability to replace cast iron parts in the transportation industry. The properties of the hypereutectic alloy are greatly dependent on the morphology, size and distribution of primary silicon crystals in the alloy. Mechanical properties of the hypereutectic Al–Si alloy can be improved by the simultaneous refinement and modification of the primary and eutectic silicon and by controlling the solidification parameters. In this paper, the effect of solidification rate and melt treatment on the evolution of microstructure in hypereutectic Al–Si alloys are reviewed. Different types of primary silicon morphology and the conditions for its nucleation and growth are explained. The paper discusses the effect of refinement/modification treatments on the microstructure and properties of the hypereutectic Al-Si alloy. The importance and effect of processing variables and phosphorus refinement on the silicon morphology and wear properties of the alloy is highlighted.


Hypereutectic Al–Si alloys Eutectic silicon Primary silicon Modification and refinement Wear 



One of the authors (VV) thanks National Institute of Technology Karnataka for the Research Scholarship.


  1. 1.
    Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook, Vol. 2, ASM International, Materials Park, OH (1990).Google Scholar
  2. 2.
    Lasa L, and Rodriguez-Ibabe J M, Mater Sci Eng A 363 (2003) 193.CrossRefGoogle Scholar
  3. 3.
    Qian Z, Liu X, Zhao D, and Zhang G, Mater Lett 62 (2008) 2146.CrossRefGoogle Scholar
  4. 4.
    Archer R S, Kempf W L, US Patent 1799837 (1931).Google Scholar
  5. 5.
    Rainer R S, US Patent 1940922 (1933).Google Scholar
  6. 6.
    Donahue R, Fabiyi P A Society of Automotive Engineers (2000), Accessed 10 Sept 2012.
  7. 7.
    Luo A A, Sachdev A K, and Powell B R, China Foundry 7 (2010) 463.Google Scholar
  8. 8.
    Zeren M, Mater Des 28 (2007) 2511.CrossRefGoogle Scholar
  9. 9.
    Haizhi Ye, J Mater Eng Perform 12 (2003) 287.CrossRefGoogle Scholar
  10. 10.
    Slattery B E, Perry T, and Edrisy A, Mater Sci Eng A 512 (2009) 76.CrossRefGoogle Scholar
  11. 11.
    Prasad B K, Venkateswarlu K, Modi O P, Jha A K, Das S, Dasgupta R, and Yegneswaran A H, Metall Mater Trans A, 29 (1998) 2747.CrossRefGoogle Scholar
  12. 12.
    Xu C L, Yang Y F, Wang H Y, and Jiang Q C, J Mater Sci 42 (2007) 6331.CrossRefGoogle Scholar
  13. 13.
    Lozano D E, Mercado-solis R D, Perez A J, Talamantes J, and Morales F, Wear 267 (2009) 545.CrossRefGoogle Scholar
  14. 14.
    Liu G, Li G, Anhui C, and Chen Z, Mater Des 32 (2011) 121.CrossRefGoogle Scholar
  15. 15.
    Xu C L, Wang H Y, Qiu F, Yang Y F, and Jiang Q C, Mater Sci Eng A 417 (2006) 275.CrossRefGoogle Scholar
  16. 16.
    Li P, Nikitin V I, Kandalova E G, and Nikitin K V, Mater Sci Eng A 332 (2002) 371.CrossRefGoogle Scholar
  17. 17.
    Kasprzak W, Sahoo M, Sokolowski J, Yamagata H, and Kurita H, Int J Metal Casting, 9 (2009) 55.Google Scholar
  18. 18.
    Liang D, Bayraktar Y, and Jones H, Acta Metall Mater 43 (1995) 579.CrossRefGoogle Scholar
  19. 19.
    Piątkowski J, Archiv Foundry Eng 9 (2009) 195.Google Scholar
  20. 20.
    Gupta M, Li Y, Wu Y, and Lavernia E J, J Therm Anal 44 (1995) 1321.CrossRefGoogle Scholar
  21. 21.
    Ho C R, and Cantor B, Acta Metall Mater 43 (1995) 3231.CrossRefGoogle Scholar
  22. 22.
    Matsuura K, Kudoh M, Kinoshita H, and Takahashi H, Mater Chem Phys 81 (2003) 393.CrossRefGoogle Scholar
  23. 23.
    Dasgupta R, J Mater Process Technol 72 (1997) 380.CrossRefGoogle Scholar
  24. 24.
    Gruzleski J E, and Closset B, The Treatment of Liquid AluminumSilicon Alloys, Des Plaines, IL: American Foundrymen’s Society, Inc. (1990).Google Scholar
  25. 25.
    Hegde S, and Prabhu K N, J Mater Sci 43 (2008) 3009.CrossRefGoogle Scholar
  26. 26.
    Robles Hernandez F C, and Sokolowski J H, J Alloys Compd 419 (2006) 180.CrossRefGoogle Scholar
  27. 27.
    Yi H, and Zhang D, Mater Lett 57 (2003) 2523.CrossRefGoogle Scholar
  28. 28.
    Pei Y T, De Hosson J Th. M, Acta mater 49 (2001) 561.CrossRefGoogle Scholar
  29. 29.
    Pei Y T, De Hosson J Th. M, Acta mater 48 (2000) 2617.CrossRefGoogle Scholar
  30. 30.
    Kang H S, Yoon W Y, Kim K H, Kim M H, and Yoon Y P, Mater Sci Eng A 404 (2005) 117.CrossRefGoogle Scholar
  31. 31.
    Nikanorov S P, Volkov M P, Gurin V N, Burenkov Y A, Kardashev B K, Regel L L, and Wilcox W R, Mater Sci Eng A 390 (2005) 63.CrossRefGoogle Scholar
  32. 32.
    Korojy B, and Frediksson H, Trans Ind Inst Met 62 (2009) 361.CrossRefGoogle Scholar
  33. 33.
    Robles Hernandez F C, Sokolowski J H, J Alloys Compd 426 (2006) 205.CrossRefGoogle Scholar
  34. 34.
    Xu C L, and Jiang Q C, Mater Sci Eng A 437 (2006) 451.CrossRefGoogle Scholar
  35. 35.
    Wang R, Lu W, and Hogan L M, Metall Trans A 28 (1997) 1233.CrossRefGoogle Scholar
  36. 36.
    Yan-Feng H, Xiang-Fa L, Har-Mei W, Zhen-Qing W, Xiu-Fang B, and Jun-Yan Z, Trans Nonferrous Met Soc China 13 (2003) 92.Google Scholar
  37. 37.
    Xu C L, Wang H Y, Liu C, and Jiang Q C, J Crystal Growth 291 (2006) 540.CrossRefGoogle Scholar
  38. 38.
    Yilimaz F, Atasoy O A, and Elliot R, J Crystal Growth 118 (1992) 377.CrossRefGoogle Scholar
  39. 39.
    Yilimaz F, and Elliot R, J Mater Sci 24 (1989) 2065.CrossRefGoogle Scholar
  40. 40.
    Liu R P, Herlach D M, Vandyoussefi M, and Greer A L Metall Mater Trans A 35 (2004) 607.CrossRefGoogle Scholar
  41. 41.
    Liu R P, Herlach D M, Vandyoussefi M, and Greer A L Metall Mater Trans A 35 (2004) 1067.Google Scholar
  42. 42.
    Day M G, Nature 219 (1968) 1357.CrossRefGoogle Scholar
  43. 43.
    Kobayashi K, Shingu P H, and Ozaki R, J Mater Sci 10 (1975) 290.CrossRefGoogle Scholar
  44. 44.
    Ge LL, Liu R P, Li G, Ma M Z, and Wang W K, Mater Sci Eng A 385 (2004) 128.Google Scholar
  45. 45.
    Hongshanga D, and Xiangfa L, Rare Met 28 (2009) 651.CrossRefGoogle Scholar
  46. 46.
    Jones H, J Mater Sci 19 (1984) 1043.CrossRefGoogle Scholar
  47. 47.
    Radjai A, Miwa K, and Nishio T, Metall Mater Trans A 29 (1998) 1477.CrossRefGoogle Scholar
  48. 48.
    Zuo M, Zhao D, Teng X, Geng H, and Zhang Z, Mater Des 47 (2013) 857.CrossRefGoogle Scholar
  49. 49.
    Hou L G, Cui C, and Zhang J S, Mater Sci Eng A 527 (2010) 6400.CrossRefGoogle Scholar
  50. 50.
    Zuo M, and Xiangfa L, J Inorg Organomet Polym 22 (2012) 64.CrossRefGoogle Scholar
  51. 51.
    Clegg A J, and Das A A, Wear 43 (1977) 367.CrossRefGoogle Scholar
  52. 52.
    Kanno T, Xiao-lin T, and Fukuda Y, Trans Nonferrous Met Soc China 13 (2003) 1285.Google Scholar
  53. 53.
    Li X, Cai A, Liu G, Zhou Y and Zeng J, Adv Mater Res 146147 (2011) 454.Google Scholar
  54. 54.
    Li Q, Xia T, Lan Y, Zhao W, Fan L, and Li P, J. Alloys Comp doi: 10.1016/j.jallcom.2013.02.016.
  55. 55.
    Robles-Hernandez F C, Sokolowski J H, JOM 57 (2005) 48.CrossRefGoogle Scholar
  56. 56.
    Wu Y, Wang S, Li H, and Liu X, J Alloys Compd 477 (2009) 139.CrossRefGoogle Scholar
  57. 57.
    Nafis S, Hedjazi J, Boutorabi S M, and Ghomashchi R, Light Met (2004) 851.Google Scholar
  58. 58.
    Dwivedi D, Sharma K A, and Rajan T V, Mater Manuf Process 20 (2005) 777.CrossRefGoogle Scholar
  59. 59.
    Kezhuna H, Fuxiaob Y, Dazhib Z, and Lianga Z, Trans Ind Inst Met 62 (2009) 367.CrossRefGoogle Scholar
  60. 60.
    Ying Z, Dan-Qing Y, Wang-Xing L, Zhi-Sen R, Qun Z, and Jun-Hong Z, Trans Nonferrous Met Soc China 17 (2007) 413.Google Scholar
  61. 61.
    Min Z, Xiangfa L, Hongshang D, and Xiangjun L, Rare Met 28 (2009) 412.CrossRefGoogle Scholar
  62. 62.
    Wesis J C, Loper C R Jr, AFS Trans 32 (1987) 37.Google Scholar
  63. 63.
    Ramussen R T C, US Patent 3953202 (1976).Google Scholar
  64. 64.
    Zhang H, Duan H, Shao G, and Xu L, Rare Met 27 (2008) 59.CrossRefGoogle Scholar
  65. 65.
    Zuo M, Liu X, and Sun Q, J Mater Sci 44 (2009) 1952.CrossRefGoogle Scholar
  66. 66.
    Lescuyer H, Allibert M, and Laslaz G, J Alloys Compd 279 (1998) 237.CrossRefGoogle Scholar
  67. 67.
    Zhang Q, Liu X, and Dai H, J Alloys Compd 480 (2009) 376.CrossRefGoogle Scholar
  68. 68.
    Zuo M, Liu X F, Sun Q Q, and Jiang K, J Mater Process Technol 209 (2009) 5504.CrossRefGoogle Scholar
  69. 69.
    Kasprzak W, Sediako D, Sahoo M, Walker M, Swainson I, Supplemental Proceedings, Materials Processing and Properties 1 (2010) 93.Google Scholar
  70. 70.
    Zhi-ying O, Xie-min M, and Mei H, J Shanghai University (English Edition) 11 (2007) 400.CrossRefGoogle Scholar
  71. 71.
    Mascre C, British Foundry man (1953) 227.Google Scholar
  72. 72.
    Clegg A J, and Das A A, British Foundry man 70 (1977) 56.Google Scholar
  73. 73.
    Tenekedijiv N, and Gruzleski J E, Cast Met 3 (1990) 96.Google Scholar
  74. 74.
    Lashgari H R, Emamy M, Razaghian A, and Najimi A A, Mater Sci Eng A 517 (2009) 170.CrossRefGoogle Scholar
  75. 75.
    Nogita K, McDonald S D, and Dahle A K, Philos Mag 84 (2004) 1683.CrossRefGoogle Scholar
  76. 76.
    Chang J Y, Kim G H, Moon I G, and Choi C S, Scripta Mater 39 (1998) 307.CrossRefGoogle Scholar
  77. 77.
    Weixi S, Bo G, Ganfeng T, Shiwei L, Yi H, and Fuxiao Y, J Rare Earths 28 (2010) 367.CrossRefGoogle Scholar
  78. 78.
    Faraji M, Todd I, and Jones H, J Mater Sci 40 (2005) 6363.CrossRefGoogle Scholar
  79. 79.
    Fuxiao Y, Jianhua P, Kezhun H, Dazhia Z, and Liang Z, Trans Ind Inst Met 62 (2009) 347.CrossRefGoogle Scholar
  80. 80.
    Yamagata H, Kasprzak W, Aniolek M, Kurita H, and Sokolowski J H, Mater Process Technol 203 (2008) 333.CrossRefGoogle Scholar
  81. 81.
    Sulzer J, Mod Castings 39 (1960) 38.Google Scholar
  82. 82.
    Mandal B, Saha A, and Chakraborty M, AFS Trans 99 (1991) 643.Google Scholar
  83. 83.
    Kaneko J, Sugamata M, and Aoki K I, J Jpn Inst Met 42 (1978) 972.Google Scholar
  84. 84.
    Kyffin W J, Rainforth W M, and Jones H, J Mater Sci 36 (2001) 2667.CrossRefGoogle Scholar
  85. 85.
    Li Y, Zhang D, Xia W, Long Y, and Zhang W, J Mater Sci Lett 21 (2002) 537.CrossRefGoogle Scholar
  86. 86.
    Radjai A, Miwa K, and Nishio T, Metall Mater Trans A 29A (1998) 1477.CrossRefGoogle Scholar
  87. 87.
    Kaur P, Dwivedi D K, and Pathak P M, Int J Adv Manuf Technol 63 (2012) 415.CrossRefGoogle Scholar
  88. 88.
    Abramov V O, Abramov O V, Straumal B B, and Gust W, Mater Des 18 (1997)323.CrossRefGoogle Scholar
  89. 89.
    Sarkar A D, Wear 31 (1975) 331.CrossRefGoogle Scholar
  90. 90.
    Kadhim M J, and Dwarakadasa E S, Wear 82 (1982) 377.CrossRefGoogle Scholar
  91. 91.
    Krishna Kanth V, Pramila Bai B N, and Biswas S K, Scripta Metall 24 (1990) 267.CrossRefGoogle Scholar
  92. 92.
    Clarke J, and Sarkar A D, Wear 54 (1979) 7.CrossRefGoogle Scholar
  93. 93.
    Torabian H, Patak J P, and Tiwari S N, J Mater Sci Lett 14 (1995) 1631.CrossRefGoogle Scholar
  94. 94.
    Lee J, Kang S, and Yoon S, Met Mater 5 (1999) 357.Google Scholar
  95. 95.
    Wang F, Ma Y, Zhang Z, Cui X, and Jin Y, Wear 256 (2004) 342.CrossRefGoogle Scholar
  96. 96.
    Elmadagli M, and Alpas A T, Wear 261 (2006) 367.CrossRefGoogle Scholar
  97. 97.
    Prasad B K, Venkateswarlu K, Modi O P, and Yegneswaran A H, J Mater Sci Lett 15 (1996) 1773.CrossRefGoogle Scholar
  98. 98.
    Elmadagli M, Perry T, and Alpas A T, Wear 262 (2007) 79.CrossRefGoogle Scholar
  99. 99.
    Hekmat-Ardakan A, Liu X, Ajersch F, and Grant Chen X, Wear 269 (2010) 684.CrossRefGoogle Scholar
  100. 100.
    Shah K B, Kumar S, and Dwivedi D K, Mater Des 28 (2007) 1968.CrossRefGoogle Scholar
  101. 101.
    Alloy phase diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH (1992).Google Scholar

Copyright information

© Indian Institute of Metals 2013

Authors and Affiliations

  1. 1.Department of Metallurgical & Materials EngineeringNational Institute of Technology KarnatakaMangaloreIndia

Personalised recommendations