Effect of Mechanical Arc Oscillation on the Grain Structure of Mild Steel Weld Metal

  • S. Mahajan
  • N. S. BiradarEmail author
  • R. Raman
  • S. Mishra
Technical Paper


The effect of mechanical arc oscillation on the weld metal grain structure in mild steel gas tungsten arc welds has been studied. For welds made without arc oscillation, columnar grains were observed in the weld metal; however, for the same welding parameters, the weld made with arc oscillation had smaller sized relatively equiaxed grains in the weld metal. The strengths for weld made with arc oscillation was higher than that for weld made without arc oscillation, with appreciable increase in ductility; this could be attributed to the reduction in grain size diameter due to arc oscillation. Lower weld metal hardness and increase in heat affected zone hardness was observed in weld made with arc oscillation; this could be attributed to increase in pro-eutectoid ferrite formation with absence of Widmanstatten ferrite structures in the weld metal and less coarsening of grains in the heat affected zone due to increased cooling rate.


Gas tungsten arc welding Mechanical arc oscillation Mild steel Weld metal grain structure 


  1. 1.
    Easterling K, Introduction to Physical Metallurgy of Welding, Butterworths & Co. Ltd., Moscow (1983).Google Scholar
  2. 2.
    Bhadeshia, H K D H, Steels: Microstructures and Properties, 2nd edition, Edward Arnold, London (1995).Google Scholar
  3. 3.
    Kou S and Le Y, Weld J 64 (1985) p 51s.Google Scholar
  4. 4.
    Rao S R K, Reddy G M, Kamaraj M, Rao K P, Mater Sci Eng A 404 (2005) p 227.CrossRefGoogle Scholar
  5. 5.
    Sundaresan S, and Ram G D J, Sci Techno Weld Join 4 (1999) p 151.CrossRefGoogle Scholar
  6. 6.
    Sivaprasad K, Raman S G S, Mastanaiah P, Reddy G M, Mater Sci Eng A 428 (2006) p 327.CrossRefGoogle Scholar
  7. 7.
    Biradar N S, Mishra S, and Raman R, in 12th International Conference on Aluminium Alloys (ICAA12), (eds) Kumai S, Umezawa O, Takayama Y, Tsuchida T, Sato T, Yokohama, Japan (2010), p 922.Google Scholar
  8. 8.
    Huang C, and Kou S, Weld J 80 (2001) p 46s.Google Scholar
  9. 9.
    Garland J G, Metal Constr British Weld 21 (1974) p 121.Google Scholar
  10. 10.
    Kumar A, Shailesh P, and Sundarrajan S, Mater Design 29 (2008) p 1904.CrossRefGoogle Scholar
  11. 11.
    Ram G D J, Murugesan R, and Sundaresan S, J Mater Eng Perform 8 (1999) p 513.CrossRefGoogle Scholar
  12. 12.
    Biradar N S, and Raman R, in: Proceedings of the IIW International Conference on joining, cutting, and surfacing technology, (eds) Kulkarni D V, Manish Samant, Krishnan S, Amitava De, Krishnan J, Hiren Patel, and Bhaduri A K, at Chennai (2011), p 371.Google Scholar
  13. 13.
    Kou S, Welding Metallurgy, 2nd edition, Wiley, New York, 2003.Google Scholar
  14. 14.
    DeNale R, and Lukens W E, in Proceedings of Ti-6211 Basic Research Programme, Second Conference, (eds) Rath B B, MacDonald B A, Arora O P, Office of Naval Research, Arlington (1984) p 203.Google Scholar
  15. 15.
    Kou S, and Le Y, Metall Trans, 16A (1985) p 1345.Google Scholar
  16. 16.
    Tseng CF, and Savage WF, Weld J 50 (1971) p 777.Google Scholar
  17. 17.
    Matsuda F, Nakagawa H, Nakata K, and Ayani R, Trans Jpn Weld Res Inst 7 (1978) p 111.Google Scholar
  18. 18.
    Matsuda F, Nakata K, Miyanaga Y, Kayano T, and Tsukamoto K, Trans Jpn Weld Res Inst 7 (1978) p 33.Google Scholar
  19. 19.
    Madhusudhan Reddy G, Gokhale A, Prasad Rao K, J Mater Sci 32 (1997) 4117.CrossRefGoogle Scholar
  20. 20.
    ASTM Standard E562, Standard Test Methods for Determining volume fraction by systematic manual point count (2011).Google Scholar
  21. 21.
    ASTM Standard E 8-04, Standard Test Methods for Tension Testing of Metallic Materials (2001).Google Scholar
  22. 22.
    Wang S J, Zhao X, Zhang Y D, Zuo L, Esling C, Mater Trans JIM 48 (2007) 2816.CrossRefGoogle Scholar
  23. 23.
    Mehl R F, Barrett C S, Smith D W, Trans Am Inst Min Metall Eng 105 (1933) p 215.Google Scholar
  24. 24.
    Wang S J, Zhao X, Xiao1 N, and Zuo1 L, Steel Research International Materials Technology, 81 (2010) p 1121.
  25. 25.
    Ohishi Y, Murai T, Ohtsuka H, Itoh K, Wada H, CAMP-ISIJ, 11 (1998) p 580.Google Scholar
  26. 26.
    Courtney T H, Mechanical Behaviour of Materials, McGraw-Hill (1990) p 17.Google Scholar
  27. 27.
    Pickering F B, Physical Metallurgy and the Design of Steels, Applied Science, London (1978).Google Scholar
  28. 28.
    Gharibshahiyan E, Raouf A H, Parvin N, Rahimian M, Mater Design 32 (2011) p 2042.CrossRefGoogle Scholar

Copyright information

© Indian Institute of Metals 2012

Authors and Affiliations

  • S. Mahajan
    • 1
  • N. S. Biradar
    • 1
    Email author
  • R. Raman
    • 1
  • S. Mishra
    • 1
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayPowai, MumbaiIndia

Personalised recommendations