Flame spray synthesis of nano lanthanum strontium manganite for solid oxide fuel cell applications

  • Deepu J. BabuEmail author
  • Azad J. Darbandi
  • Jens Suffner
  • S. S. Bhattacharya
  • Horst Hahn


Lanthanum strontium manganite is a classic cathode material for solid oxide fuel cells (SOFC). Nanosized LSM particles, due to their higher specfic surface area, have been found to enhance the electrode performance by providing a larger three phase boundary (TPB) area. However conventional processes like solid state, sol-gel or co-precipitation, produce particles having low specic surface area (< 8 m2/g) and hence require high sintering temperatures. Moreover these processes are multi-step and are hence time consuming. In the present work, single phase LSM with a crystallite size of 26 nm and a specfic surface area as high as 40 m2/g was produced by a flame spray pyrolysis method. The as-synthesized powder was characterized by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Porous thin films were prepared by spin coating a water based dispersion of LSM. Electrochemical performance of the nanoparticulate cathode films were studied using impedance spectroscopy. Interfacial polarization resistance value of as low as 0.085 Ωcm 2 at 850°C was obtained by this method. This method thus offers a very cost effective approach for the preparation of highly active cathode thin films for SOFC applications.


FSP LSM SOFC Impedance spectroscopy 


  1. 1.
    Minh N Q, Journal of the American Ceramic Society, 76(3) (1993) 563.CrossRefGoogle Scholar
  2. 2.
    Steele B C H and Heinzel A, Nature 414(6861) (2001) 345.CrossRefGoogle Scholar
  3. 3.
    Liang F, Chen J, Jiang S P, Chi B, Pu J and Jian L, Electrochemistry Communications, 11(5) (2009) 1048.CrossRefGoogle Scholar
  4. 4.
    Darbandi A J, Enz T and Hahn H, Solid State Ionics, 180(4–5) (2009) 424.CrossRefGoogle Scholar
  5. 5.
    Darbandi A J and Hahn H, Solid State Ionics, 180(26–27) (2009) 1379.CrossRefGoogle Scholar
  6. 6.
    Bell R J, Millar G J and Drennan J, Solid State Ionics, 131(3–4) (2000) 211.CrossRefGoogle Scholar
  7. 7.
    Brant M C, Zani J A and Lameiras F S, Materials Science Forum, 498–499 (2005) 630.CrossRefGoogle Scholar
  8. 8.
    Gaudon M, Laberty-Robert C, Ansart F, Stevens P and Rousset A, Solid State Sciences, 4(1) (2002) 125.CrossRefGoogle Scholar
  9. 9.
    Pratsinis S E, Progress in Energy and Combustion Science, 24(3) (1998) 197.CrossRefGoogle Scholar
  10. 10.
    Mueller R, Madler L and Pratsinis S E, Chemical Engineering Science, 58(10) (2003) 1969.CrossRefGoogle Scholar
  11. 11.
    Heel A, Holtappels P and Graule T, Journal of Power Sources, 195(19) (2010) 6709.CrossRefGoogle Scholar
  12. 12.
    Heel A, Holtappels P, Hug P and Graule T, Fuel Cells, 10(3) (2010) 419.CrossRefGoogle Scholar
  13. 13.
    Charojrochkul S, Choy K L and Steele B C H, Journal of the European Ceramic Society, 24(8) (2004) 2515.CrossRefGoogle Scholar
  14. 14.
    Brunauer S, Emmett P H and Teller E, Journal of the American Chemical Society, 60(2) (1938) 309.CrossRefGoogle Scholar
  15. 15.
    Labrincha J A, Frade J R and Marques F M B, Journal of Materials Science, 28(14) (1993) 3809.CrossRefGoogle Scholar
  16. 16.
    Brugnoni C, Ducati U and Scagliotti M, Solid State Ionics, 76(3–4) (1995) 177.CrossRefGoogle Scholar
  17. 17.
    Mitterdorfer A and Gauckler L J, Solid State Ionics, 111(3–4) (1998) 185.CrossRefGoogle Scholar
  18. 18.
    Tsoncheva T, Rosenholm J, Teixeira C V, Dimitrov M, Linden M, Minchev C, Microporous and Mesoporous Materials, 89(1–3) (2006) 209.CrossRefGoogle Scholar
  19. 19.
    Gnanasekar K, Jiang X, Jiang J, Aghasyan M, Tiltsworth R, Hormes J, Rambabu B, Solid State Ionics, 148 (2002) 575.CrossRefGoogle Scholar
  20. 20.
    Vazquez C V, Quintela M A L, Journal of Solid State Chemistry, 179 (2006) 3229.CrossRefGoogle Scholar
  21. 21.
    Kawagoe Y, Namie S, Nomura M, Kumakura T, Shiozaki K, Nakajima Y, U. Stimming, S. Singhal, H. Tagawa, W. Lehnert (Eds.), Solid oxide fuel cells V, The Electrochemical Society, Pennington, (1997) 549.Google Scholar
  22. 22.
    Mizusaki J, Tagawa H, Tsuneyoshi K and Sawata A, Journal of The Electrochemical Society, 138(7) (1991) 1867.CrossRefGoogle Scholar
  23. 23.
    Antunes R, Golec T, Miller M, Kluczowski R, Krauz M and Krzastek K, Journal of Fuel Cell Science and Technology, 7 (2010).Google Scholar
  24. 24.
    Murray E P, Tsai T Barnett S A, Solid State Ionics, 110(3–4) (1998) 235.CrossRefGoogle Scholar
  25. 25.
    Jiang S, Journal of Materials Science, 43(21) (2008) 6799.CrossRefGoogle Scholar

Copyright information

© Indian Institute of Metals 2011

Authors and Affiliations

  • Deepu J. Babu
    • 1
    • 2
    Email author
  • Azad J. Darbandi
    • 2
    • 3
  • Jens Suffner
    • 2
    • 3
  • S. S. Bhattacharya
    • 1
  • Horst Hahn
    • 2
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Joint Research Laboratory NanomaterialsTechnische Universität Darmstadt and Karlsruhe Institute of TechnologyDarmstadtGermany
  3. 3.Institute of NanotechnologyKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations