Skip to main content

Advertisement

Log in

Contribution of the chemical weathering to the CO2 consumption in a microbasin of Quadrilátero Ferrífero, Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The drainage microbasin of the Bule stream drains an important part of the Quadrilátero Ferrífero, known as one of the main metallogenetic provinces on the planet and of great importance for Brazilian mineral production. The surface water chemistry was analyzed to quantify the chemical weathering rates and the CO2 consumption associated with the weathering processes. Bicarbonate, calcium, magnesium, and silica are the main ions dissolved in the basin, reflecting the local lithotype composed of dolomites, phyllites, and quartzites. The main source of dissolved elements for the basin is carbonate rocks, followed by rainfall. The sulfide oxidation process appeared as the main source of sulfate for the river (approximately 90%). The total weathering rate was 1.5 × 105 mol km−2 year−1 and the total CO2 consumption was 7.3 × 104 mol km−2 year−1, where carbonate rocks are mainly responsible for these flows (> 90%). The highest values were found at high flow, where for the carbonate phases, the weathering rate was 5.38 × 102 mol km−2 day−1, and for CO2 consumption, it was 2.92 × 102 mol km−2 day−1. Despite being a microbasin, the results are relevant when compared to large basins, showing the importance of small-scale studies of rivers that drain basins with a predominance of the lithological type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Source: INMET

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Not applicable.

References

  • Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern São Francisco craton region, Minas Gerais, Brazil: evidence for paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res 90:29–58

    Article  Google Scholar 

  • Almeida FFM (1977) O cráton do São Francisco. Rev Bras Geociências 7:349–364

    Article  Google Scholar 

  • Almeida LG, Castro PTA, End I, Fonseca MA (2005) O grupo Sabará no sinclinal Dom Bosco, Quadrilátero Ferrífero: Uma revisão estratigráfica. Rev Bras Geociências 35:177–186

    Article  Google Scholar 

  • Barbosa ALM (1968) Contribuições recentes à geologia do Quadrilátero Ferrífero. Ph.D. Thesis, Escola de Minas da Universidade Federal de Ouro Preto, Ouro Preto, 68 p.

  • Berner RA, Lasaga AC, Garrels RM (1983) The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    Article  Google Scholar 

  • Brasil (2016) Departamento Nacional de Produção Mineral. Anuário Mineral Brasileiro: Principais Substâncias Metálicas, Brasilia, 31 p

  • Brasil (2018) Departamento Nacional de Produção Mineral. Anuário Mineral Brasileiro: Principais Substâncias Metálicas. Brasilia, 33 p

  • Brunet F, Gaiero D, Probst JL, Depetris PJ, Lafaye FG, Stille P (2005) δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:2231–3344

    Article  Google Scholar 

  • Dobriyal P, Badola R, Tuboi C, Hussain SA (2016) A review of methods for monitoring streamflow for sustainable water resource management. Appl Water Sci 07:2617–2628. https://doi.org/10.1007/s13201-016-0488-y

    Article  Google Scholar 

  • Chen J, Wang F, Meybeck M, He D, Xia X, Zhang L (2005) Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Global Biogeochem Cy 19:1958–2000. https://doi.org/10.1029/2004GB002325

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Deirmendjian L, Abril G (2018) Carbon dioxide degassing at the groundwater-stream atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed. J Hydrol 558:129–143

    Article  Google Scholar 

  • Dorr JVN (1969) Physiographic, stratigraphic, and structural development of the Quadrilátero Ferrifero, Minas Gerais, Brazil. Geological Survey Professional, 110 p

  • Fan BL, Zhao ZQ, Tao FX, Liu BJ, Tao ZH, Gao S, Zhang LH (2014) Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: a comparison among the upstream, midstream and downstream. J Asian Earth Sci 96:17–26

    Article  Google Scholar 

  • Feitosa FAC, Filho JM (2000) Hidrogeologia Conceitos e Aplicações. 2ª edição. Serviço Geológico do Brasil (CPRM), 391 p

  • Fraga LMB (1992) Estrutural da região do morro do Bule, sinclinal Dom Bosco, Quadrilátero Ferrífero - MG. Ph.D. Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 130 p

  • Gaillardet J, Duprá B, Allàgre CJ, Négrel P (1997) Chemical and physical denudation in the Amazon river basin. Chem Geol 142:141–173

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allàgre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Galbiatti HF, Fonseca MA, Pereira MC, Polônia JC (2007) Structural control of Au-Pd mineralization (Jacutinga): An example from the Cauê Mine, Quadrilátero Ferrífero. Brazil Ore Geol Rev 32:614–628

    Article  Google Scholar 

  • Gao Q, Tao Z, Huang X, Nan L, Yu K, Wang Z (2009) Chemical weathering and CO2 consumption in the Xijiang river basin, south China. Geomorphology 106:324–332

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Am Assoc Adv Sci 170:1088–1090

    Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, p 577

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2018) Global warming of 1.5°C. 32 p

  • Klein AC (2010) Cromatografia iônica como método analítico alternativo para a análise quantitativa de analito. Trabalho de Conclusão de Curso em Química Industrial, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 46 p

  • Ladeira EA (1980) Metallogenesis of gold at the Morro Velho Mine and in the Nova Lima District, Quadrilátero Ferrífero, Minas Gerais. Thesis, University Western Ontario, Ontario, Brazil, p 272

    Google Scholar 

  • Lages AS, Maria A, Horbe C (2013) Geoquímica de rios de água preta do sudeste do Amazonas: Origem, fluxo dos elementos e consumo de CO2. Acta Amazon 43:343–352

    Article  Google Scholar 

  • Li S, Lu XX, Bush RT (2014) Chemical weathering and CO2 consumption in the lower Mekong river. Sci Total Environ 472:162–177

    Article  Google Scholar 

  • Liu Z, Zhao J (1999) Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol 39

  • Liu Z, Dreybrodt W, Liu H (2011) Atmospheric CO2 sink: Silicate weathering or carbonate weathering. Appl Geochem 26:5292–5294

    Article  Google Scholar 

  • Moon S, Chamberlain CP, Hilley GE (2014) New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim Cosmochim Acta 134:257–274

    Article  Google Scholar 

  • Mora G, Blaser L (2019) Effect of catchment lithology on dissolved inorganic carbon budgets in suburban streams of Baltimore, Maryland, during rainfall minima. Geosci J 1226—4806.

  • Mortatti J, Probst JL (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197:177–196

    Article  Google Scholar 

  • Mortatti J, Oliveira H, Bibian JP, Lopes RA, Bonassi JA, Probst JL (2006) Origem do carbono inorgânico dissolvido no rio Tietê (São Paulo ): Reações de equilíbrio e variabilidade temporal. Geochim Brasiliensis 20:267–277

    Google Scholar 

  • Noce CM, Teixeira W, Machado N (1997) Geoquímica dos gnaisses TTGs e granitóides neoarqueanos do complexo Belo Horizonte, Quadrilátero Ferrífero, Minas Gerais. Rev Bras Geociências 27:25–32

    Article  Google Scholar 

  • Pedro VS, Feio R (2010) Distribuição espacial e sazonal de anuros em três ambientes na serra do Ouro Branco, extremo sul da cadeia do Espinhaço, Minas Gerais. Brasil Rev Biotemas 23:143–154

    Google Scholar 

  • Piatek KB, Mitchell MJ, Silva SR, Kendal C (2005) Sources of nitrate in snowmelt discharge: evidence from water chemistry and stable isotopes of nitrate. Water Air Soil Poll 165:13–35

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Reprinted: American Geophysical Union Transactions, 25, 914—923.

  • R Core Team, 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Roeser HMP, Roeser AP (2010) O Quadrilátero Ferrífero - MG, Brasil: Aspectos sobre sua história, seus recursos minerais e problemas ambientais relacionados. Geonomos 18:33–37

    Google Scholar 

  • Santos V, Gastmans D (2016) Composição química da água de chuva em Rio Claro (SP). Rev. Instituto Geológico. 37.

  • Souza PA, Mello WZ, Maldonado J, Evangelista H (2006) Composição química da chuva e aporte atmosférico na Ilha Grande. RJ Quim Nova 29:471–476

    Article  Google Scholar 

  • Stallard RF, Edmond JM (1981) Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9855

    Article  Google Scholar 

  • Wallmann K (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65:3005–3025

    Article  Google Scholar 

  • Wang L, Zhang L, Cai WJ, Wang B (2016) Consumption of atmospheric CO2 via chemical weathering in the Yellow river basin: the Qinghai-Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River. Chem Geol 430:34–44

    Article  Google Scholar 

  • Xu Z, Liu CQ (2010) Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption. Appl Geochem 25:1603–1614

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Financial Code 001. The authors also acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Grant Numbers: 149052/2017-0) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant Numbers: E-26/ 202.418/2018), Brazilian governmental institutions, for funding this study.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Financial Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant numbers: 149052/2017–0), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant Numbers: E-26/ 202.418/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela V. Machado.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and materials

The data that support the findings of this study are available in the supplementary material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, D.V., e Silva, C.R., Marques, E.D. et al. Contribution of the chemical weathering to the CO2 consumption in a microbasin of Quadrilátero Ferrífero, Brazil. Environ Earth Sci 80, 535 (2021). https://doi.org/10.1007/s12665-021-09822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09822-0

Keywords

Navigation