Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermophysical rock properties of the crystalline Gonghe Basin Complex (Northeastern Qinghai–Tibet-Plateau, China) basement rocks

  • 70 Accesses


The basement of the Gonghe Basin complex (GBC) mainly consists of plutonic rocks, which, in general are suitable for geothermal applications. Knowledge of the rock properties of the deep basement formations is of fundamental importance for unconventional geothermal applications such as enhanced geothermal systems. An outcrop analogue study at the margin of the GBC was conducted to improve the understanding of the petrophysical rock properties and enhance the data availability for numeric simulation and resource assessment approaches. In total 148 samples were derived from 21 sampling locations at the margin of the GBC area and mountain ranges within. Lithologically, the sample set was divided in three sample types: (1) syenogranite, (2) granite and biotite granite, (3) granodiorite. Petrophysical properties such as grain density, bulk density, porosity, intrinsic matrix permeability, compressional and shear wave velocities as well as thermal properties like thermal conductivity and thermal diffusivity were analyzed on oven-dry specimens under laboratory conditions (ambient temperature, atmospheric pressure). Unconfined compressive strength was additionally measured on selected samples. The resulting dataset shows averaged bulk densities ranging between 2.59 and 2.73 g cm−3 and porosities from 0.2 to 1.7%. Matrix permeability is lower than 1 × 10–18 m2. Averaged thermal conductivity ranges from 2.34 to 3.19 W m−1 K−1, compressional wave velocity from 3.6 to 6.2 km s−1 and unconfined compressive strength from 128 to 241 MPa. Petrophysical data are correlated with mineral content and grain size to show the influence of petrography on petrophysical properties. Although the petrophysical rock properties were analyzed at laboratory conditions and therefore deviate from in situ properties at reservoir conditions, the presented dataset enhances the knowledge of petrophysical rock properties within the study area for further geothermal applications. A first prediction of in situ reservoir conditions was performed on laboratory data based on empirically determined pressure and temperature dependencies of thermal conductivity, thermal diffusivity, specific heat capacity and compressional wave velocity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

adapted from Craddock et al. (2014), color code adapted from the International Commission on Stratigraphy at 0.6 opacity

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Aigner T, Asprion U, Hornung J, Junghans WD, Kostrewa R (1996) Integrated outcrop analgodue studies for Triassic alluvial reservoirs: examples from southern Germany. J Pet Geol 19(4):393–406. https://doi.org/10.1111/j.1747-5457.1996.tb00446.x

  2. Aizawa Y, Ito K, Tatsumi Y (2002) Compressional wave velocity of granite and amphibolite up to melting temperatures at 1 GPa. Tectonophysics 351:255–261. https://doi.org/10.1016/S0040-1951(02)00251-2

  3. Al-Ajmi AM, Zimmermann R (2005) Relation between the Mogi and the Coulomb failure criteria. Int J Rock Mech Min Sci 42:431–439. https://doi.org/10.1016/j.ijrmms.2004.11.004

  4. Al-Shayea NA (2004) Effects of testing methods and conditions on the elastic properties of limestone rock. Eng Geol 74:139–156. https://doi.org/10.1016/j.enggeo.2004.03.007

  5. Ameen MS, Smart BGD, Somerville JM, Hammilton S, Naji NA (2009) Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Mar Pet Geol 26:430–444. https://doi.org/10.1016/j.marpetgeo.2009.01.017

  6. Aretz A, Bär K, Götz AE, Sass I (2016) Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben): impact of mineral content, depositional environment and diagenesis on petrophysical properties. Int J Earth Sci (Geol Rundsch) 105:1431–1452. https://doi.org/10.1007/s00531-015-1263-2

  7. Arndt D (2012) Geologische Strukturmodellierung von Hessen zur Bestimmung von Geo-Potenzialen. Dissertation, Technische Universität Darmstadt

  8. Assad A (1955) A Study of thermal conductivity of fluid bearing porous rocks. Dissertation, University of California.

  9. ASTM International (2014) ASTM D7012–14e1 Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International. https://www.doi.org/10.1520/D7012-14E01. Accessed Sept 2018

  10. Atef H, Abd El-Gawad AMS, Abdel Zaher M, Farag KSI (2016) The contribution of gravity method in geothermal exploration of southern part of the Gulf of Suez-Sinai region Egypt. NRIAG J Astron Geophys 5:173–185. https://doi.org/10.1016/j.nrjag.2016.02.005

  11. Bär K (2012) Untersuchung der tiefengeothermischen Potenziale von Hessen. Dissertation, Technische Universität Darmstadt.

  12. Bär K, Sass I (2014) 3D-Model of the deep geothermal potentials of Hesse (Germany) for Enhanced Geothermal Systems. Proceedings Stanford Geothermal Workshop, Stanford, 24-26.02.2014

  13. Bauer SJ, Handin J (1983) Thermal expansion and cracking of three confined water-saturated igneous rock to 800°C. Rock Mech Rock Eng 16:181–198

  14. Beck AE (1988) Methods for determining thermal conductivity and thermal diffusivity. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow determination. Handbook of terrestrial heat-flow density determination. Kluwer academic Publishers, Netherlands, pp 87–124

  15. Benson P, Schubnel A, Vinciguerra S, Trovato C, Meredith P, Young RP (2006) Modeling the permeability evolution of microcracked rocks from elastic wave velocity inversion at elevated isostatic pressure. J Geophys Res 111:B04202. https://doi.org/10.1029/2005JB003710

  16. Birch F (1960a) The velocity of compressional waves in rocks to 10 kilobars: part 1. J Geophys Res 65:1083–1102

  17. Birch F (1960b) The velocity of compressional waves in rocks to 10 kilobars: part 2. J Geophys Res 66:2199–2224

  18. Brotons V, Tomás R, Ivorra S, Grediaga A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone. Bull Eng Geol Environ 73:791–799. https://doi.org/10.1007/s10064-014-0583-y

  19. Brotons V, Tomás R, Ivorra S, Grediaga A, Martínez-Martínez J, Benavente D, Gómez-Heras M (2016) Improved correlation between the static and dynamic elastic modulus of different types of rocks. Mater Struct 49:3021–3037. https://doi.org/10.1617/s11527-015-0702-7

  20. Budiansky B, O'connell RJ (1976) Elastic moduli of a cracked solid. Int J Solids Struct 12:81–97. https://doi.org/10.1016/0020-7683(76)90044-5

  21. Buntebarth G (1989) Geothermie—Eine Einführung in die allgemeine und angewandte Wärmelehre des Erdkörpers. Springer, Berlin

  22. Carmichael RS (1989) Practical Handbook of physical properties of rocks and minerals. CRC Press, Boca Raton

  23. Chaki S, Takarli M, Agbodjan WP (2008) Influence of thermal damage on physical properties of a granite rock: porosity, permeability and ultrasonic wave evolutions. Constr Build Mater 22:1456–1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002

  24. Charléty J, Cuenot N, Dorbath C, Dorbath L (2006) Tomographic study of the seismic velocity at the Soultz-sous-Forêts EGS/HDR site. Geothermics 35:532–543

  25. Chen X, Gehrels G, Yin A, Li L, Jiang R (2012) Paleozoic and Mesozoic basement magmatisms of Eastern Qaidam Basin, Northern Qinghai–Tibet Plateau: LA-ICP-MS zircon U-Pb geochronology and its geological significance. Acta Geol Sin (English Edition) 86:350–369. https://doi.org/10.1111/j.1755-6724.2012.00665.x

  26. Chen X, Gehrels G, Yin A, Zhou Q, Huang P (2015) Geochemical and Nd–Sr–Pb–O isotopic constrains on Permo-Triassic magmatism in eastern Qaidam Basin, northern Qinghai–Tibetan plateau: Implications for the evolution of the Paleo-Tethys. J Asian Earth Sci 114:674–692. https://doi.org/10.1016/j.jseaes.2014.11.013

  27. Christaras B, Auger F, Mosse E (1994) Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Mater Struct 27:222–228. https://doi.org/10.1007/BF02473036

  28. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations. A handbook of physical constants, AGU reference shelf, vol 3. American Geophysical Union, Washington, pp 105–126

  29. Craddock WH, Kirby E, Harkins N, Zhang H, Shi X, Liu J (2010) Rapid fluvial incision along the Yellow River during headward basin integration. Nat Geosci 3:209–213. https://doi.org/10.1038/ngeo777

  30. Craddock WH, Kirby E, Zhang H (2011) Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau. Lithosphere 3:420–438. https://doi.org/10.1130/l159.1

  31. Craddock WH, Kriby E, Zhang H, Clark MK, Champagnac J-D, Yuan D (2014) Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau. Geosphere 10:1255–1282. https://doi.org/10.1130/GES01024.1

  32. Cui J, Tian L, Sun Y, Yang C (2018) Geochronology and geochemistry of early Palaeozoic intrusive rocks in the Lajishan area of the eastern south Qilian Belt Tibetan Plateau: Implications for the tectonic evolution of South Qilian. Geol J (online version). https://doi.org/10.1002/gj.3327

  33. Darot M, Gueguen Y, Baratin M-L (1992) Permeability of thermally cracked granite. Geophys Res Lett 19:869–872. https://doi.org/10.1029/92GL00579

  34. David C, Menéndez B, Darot M (1999) Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite. Int J Rock Mech Min Sci 36:433–448. https://doi.org/10.1016/S0148-9062(99)00010-8

  35. Domra Kana J, Djongyang N, Raïdandi D, Njandjock Nouck P, Dadje A (2015) A review of geophysical methods for geothermal exploration. Renew Sust Energ Rev 44:87–95. https://doi.org/10.1016/j.rser.2014.12.026

  36. Eissa EA, Kazi A (1988) Relation between static and dynamic young’s moduli of rocks. Int J Rock Mech Min Sci Geomech Abstr 25:479–482. https://doi.org/10.1016/0148-9062(88)90987-4

  37. Enge HD, Buckley SJ, Rotevatn A, Howell JA (2007) From outcrop to reservoir simulation model: workflow and procedures. Geosphere 3:469–490. https://doi.org/10.1130/GES00099.1

  38. England P, Houseman G (1986) Finite strain calculations of continental deformation: 2. Comparison with the India–Asia collision zone. J Geophys Res 91:3664–3676. https://doi.org/10.1029/JB091iB03p03664

  39. Esteban L, Pimienta L, Sarout J, Delle Piane C, Haffen S, Geraud Y, Timms NE (2015) Study cases of thermal conductivity prediction from P-wave velocity and porosity. Geothermics 53:255–269. https://doi.org/10.1016/j.geothermics.2014.06.003

  40. Feng YF, Zhang XX, Zhang B, Liu JT, Wang YG, Jia DL, Hao LR, Kong ZY (2018) The geothermal formation mechanism in the Gonghe Basin: discussion and analysis from the geological background. Chin Geol 3:331–345. https://doi.org/10.31035/cg2018043

  41. Filomena CM, Hornung J, Stollhofen H (2014) Assessing accuracy of gas-driven permeability measurements: a comparative study of diverse Hassler-cell and probe permeameter devices. Solid Earth 5:1–11. https://doi.org/10.5194/se-5-1-2014

  42. Fortin J, Stanchits S, Vinciguerra S, Guéguen Y (2011) Influence of thermal and mechanical cracks on permeability and elastic wave velocities in a basalt from Mt. Etna volcano subjected to elevated pressure. Tectonophysics 503:60–74. https://doi.org/10.1016/j.tecto.2010.09.028

  43. Gan W, Zhang P, Shen ZK, Niu Z, Wang M, Wan Y, Zhou D, Cheng J (2007) Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res 112:1978–2012. https://doi.org/10.1029/2005JB004120

  44. Gegenhuber N, Schoen J (2012) New approaches for the relationship between compressional wave velocity and thermal conductivity. J Appl Geophys 75:50–55. https://doi.org/10.1016/j.jappgeo.2011.10.005

  45. Gehrels GE, Yin A, Wang XF (2003) Magmatic history of the northeastern Tibetan Plateau. J Geophys Res. https://doi.org/10.1029/2002JB001876

  46. Genter A, Guillou-Frottier L, Feybesse J-L, Nicol N, Dezayes C, Schwartz S (2003) Typology of potential hot fractured rock resources in Europe. Geothermics 32:701–710. https://doi.org/10.1016/S0375-6505(03)00065-8

  47. Guo X, Yan Z, Aitchison JC, Fu C, Wang Z (2017) Geochemistry, geochronology and Lu–Hf isotopes of peraluminous granitic porphyry from the Walegen Au Deposit, West Qinling Terrane. Acta Geol Sin (English Edition) 91:2024–2040. https://doi.org/10.1111/1755-6724.13448

  48. Hartmann C, Rath V, Clauser C (2005) Thermal conductivity from core and well log data. Int J Rock Mech Min Sci 42:1042–1055. https://doi.org/10.1016/j.ijrmms.2005.05.015

  49. Hasterok D, Gard M, Webb J (2018) On the radiogenic heat production of metamorphic, igneous and sedimentary rocks. Geosci Front 9:1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012

  50. Hintze M, Plasse B, Bär K, Sass I (2018) Preliminary studies for an integrated assessment of the hydrothermal potentials of the Pechelbronn Group in the northern Upper Rhine Graben. Adv Geosci 45:251–258. https://doi.org/10.5194/adgeo-45-251-2018

  51. Homand-Etienne F, Houpert R (1989) Thermally induced microcracking in granites: characterization and analysis. Int J Rock Mech Min Sci 26:125–134. https://doi.org/10.1016/0148-9062(89)90001-6

  52. Horai K-I (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 75:1278–1308. https://doi.org/10.1029/JB076i005p01278

  53. Horai K-I, Simmons G (1969) Thermal conductivity of rock-forming minerals. Earth Planet Sci Lett 6:359–368. https://doi.org/10.1016/0012-821X(69)90186-1

  54. Horai K-I, Susaki J-I (1989) The effect of pressure on the thermal conductivity of silicate rocks up to 12 kbar. Phys Earth Planet Inter 55:292–305. https://doi.org/10.1016/0031-9201(89)90077-0

  55. Howell JA, Allard WM, Good TR (2014) The application of outcrop analogues in geological modeling: a review, present status and future outlook. Geol Soc Lond Spec Publ 387:1–25. https://doi.org/10.1144/SP387.12

  56. Huang H, Niu Y, Nowell G, Zhao Z, Yu X, Zhu D-C, Mo X, Ding S (2014) Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem Geol 370:1–18. https://doi.org/10.1016/j.chemgeo.2014.01.010

  57. Huang H, Niu Y, Nowell G, Zhao Z, Yu X, Mo X (2015) The nature and history of the Qilian Block in the context of the development of the Greater Tibetan Plateau. Gondwana Res 28:209–224. https://doi.org/10.1016/j.gr.2014.02.010

  58. Huang H, Nio Y, Mo X (2016) Syn-collisional granitoids in the Qilian Block on the Northern Tibetan Plateau: a long-lasting magmatism since continental collision through slab steepening. Lithos 246–247:99–109. https://doi.org/10.1016/j.lithos.2015.12.018

  59. Ide JM (1936) Comparison of statically and dynamically determined young’s modulus of rocks. Proc Natl Acad Sci 22:81–92. https://doi.org/10.1073/pnas.22.2.81

  60. Jia L, Meng F, Feng H (2018) The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai–Tibet Plateau—crustal relics of the Paleo-Tethys ocean. Miner Petrol 112:317–339. https://doi.org/10.1007/s00710-017-0544-9

  61. Jiang GZ, Gao P, Rao S, Zhang LY, Tang XY, Huang F, Zhao P, Pang ZH, He LJ, Hu SB, Wang JY (2016) Compilation of heat flow data in the continental area of China (4th edition). Chin J Geophys 59:2892–2910. https://doi.org/10.6038/cjg20160815 (in Chinese with English abstract)

  62. Kastner O, Sippel J, Scheck-Wenderoth M, Huenges E (2013) The deep geothermal potential of the Berlin area. Environ Earth Sci 70:3567–3584. https://doi.org/10.1007/s12665-013-2670-y

  63. Kastner O, Sippel J, Zimmermann G (2015) Regional-scale assessment of hydrothermal heat plant capacities fed from deep sedimentary aquifers in Berlin/Germany. Geothermics 53:353–367. https://doi.org/10.1016/j.geothermics.2014.06.002

  64. King MS (1983) Static and dynamic elastic properties of rocks from the Canadian Shield. Int J Rock Mech Min Sci Geomech Abstr 20:237–241. https://doi.org/10.1016/0148-9062(83)90004-9

  65. Klinkenberg LJ (1941) The permeability of Porous media to liquids and gases. Drilling and Productions Practices. American Petroleum Institute, Washington, pp 200–213

  66. Kolesnikov YI (2009) Dispersion effect of velocities on the evaluation of material elasticity. J Min Sci 45:347. https://doi.org/10.1007/s10913-009-0043-4

  67. Kruszewski M, Thorhallsson S, Assadi M, Sliwa T (2017) Slimhole well casing design for high-temperature geothermal exploration and reservoir assessment. AGH Drill Oil Gas 34:465–493. https://doi.org/10.7494/drill.2017.34.2.465

  68. Kukkonen IT, Peltoniemi S (1998) Relationship between thermal and other petrophysical properties of rocks in Finland. Phys Chem Earth 23:341–349. https://doi.org/10.1016/S0079-1946(98)00035-4

  69. Li D (2010) Temporal-spatial structure of intraplate uplift in the Qinghai–Tibet Plateau. Acta Geol Sin (English Edition) 84:105–134. https://doi.org/10.1111/j.1755-6724.2010.00174.x

  70. Li R, Pei X, Li Z, Sun Y, Feng J, Pei L, Chen G, Liu C, Chen Y (2013) Geochemical features, age, and tectonic significance of the Kekekete mafic-ultramafic rocks, East Kunlun Orogen, China. Acta Geol Sin (English Edition) 87:1319–1333. https://doi.org/10.1111/1755-6724.12131

  71. Li X, Mo X, Huang X, Dong G, Yu X, Luo M, Liu Y (2015) U-Pb zircon geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Early Indosinian Tongren Pluton in West Qinling: petrogenesis and geodynamic implications. J Asian Earth Sci 97:38–50. https://doi.org/10.1016/j.jseaes.2014.10.017

  72. Lichtenecker K (1924) Der elektrische Leitungswiderstand künstlicher und natürlicher Aggregate. Physikalische Zeitschrift 25:169–181

  73. Lippmann E, Rauen A (2013) TCS – Manual.

  74. Littlefield EF, Calvin WM (2014) Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada. Remote Sens Environ 140:509–518. https://doi.org/10.1016/j.rse.2013.09.007

  75. Lockner DA, Walsh JB, Byerlee JD (1977) Changes in seismic velocity and attenuation during deformation of granite. J Geophys Res 82:5374–5378. https://doi.org/10.1029/JB082i033p05374

  76. Lu H, Wang E, Shi X, Meng K (2012) Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau, as constrained by paleomagnetism and apatite fission track analyses. Tectonophysics 580:150–161. https://doi.org/10.1016/j.tecto.2012.09.013

  77. Luo BJ, Zhang HF, Xu WC, Guo L, Pan FB, Yang H (2015) The Middle Triassic Meiwu Batholith, West Qinling, Central China: implications for the evolution of compositional diversity in a composite batholith. J Petrol 56:1139–1172. https://doi.org/10.1093/petrology/egv032

  78. Manning DAC, Younger PL, Smith FW, Jones JM, Dufton DJ, Diskin S (2007) A deep geothermal exploration well at Eastgate, Weardale, UK: a novel exploration concept for low-enthalpy resources. J Geol Soc 164:371–382. https://doi.org/10.1144/0016-76492006-015

  79. McSkimin HJ, Andreatch P, Thruston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25° and − 195.8 °C. J Appl Phys 36:1624–1632. https://doi.org/10.1063/1.1703099

  80. Micromeritics (1998) GeoPyc 1360—Operator’s Manual.

  81. Micromeritics (2013) AccuPyc II 1040—Opertator’s Manual.

  82. Mielke P, Weinert S, Bignall G, Sass I (2016a) Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 324:179–189. https://doi.org/10.1016/j.jvolgeores.2016.06.002

  83. Mielke P, Bär K, Sass I (2016b) Determining the relationship of thermal conductivity and compressional wave velocity of common rock types as a basis for reservoir characterization. J Appl Geophys 140:135–144. https://doi.org/10.1016/j.jappgeo.2017.04.002

  84. Milsch HH, Spangenberg E, Kulenkampff J, Meyhöfer S (2008) A new apparatus for long-term petrophysical investigations on geothermal reservoir rocks at simulated in-situ conditions. Transp Porous Med 74:73–85. https://doi.org/10.1007/s11242-007-9186-4

  85. Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev Geophys 31:357–396. https://doi.org/10.1029/93RG02030

  86. Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Petrol Sci Eng 126:76–82. https://doi.org/10.1016/j.petrol.2014.12.010

  87. Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elasticwave velocities in basalt at elevated pressure. Tectonophysics 503:52–59. https://doi.org/10.1016/j.tecto.2010.09.027

  88. Navelot V, Géraud Y, Favier A, Diraison M, Corsini M, Lardeaux J-M, Verati C, de Lépinary JM, Legendre L, Beauchamps G (2018) Petrophysical properties of volcanic rocks and impacts of hydrothermal alteration in the Guadeloupe Archipelago (West Indies). J Volcanol Geotherm Res 360:1–21. https://doi.org/10.1016/j.jvolgeores.2018.07.004

  89. Özkahraman HT, Selver R, Işik EC (2004) Determination of the thermal conductivity of rock from P-wave velocity. Int J Rock Mech Min Sci 41:703–708. https://doi.org/10.1016/j.ijrmms.2004.01.002

  90. Pan G, Wang L, Li R, Yuan S, Ji W, Yin F, Zhang W, Wang B (2012) Tectonic evolution of the Qinghai–Tibet Plateau. J Asian Earth Sci 53:3–14. https://doi.org/10.1016/j.jseaes.2011.12.018

  91. Pei L, Rühaak W, Stegner J, Bär K, Homuth S, Mielke P, Sass I (2015) Thermo-Triax: An apparatus for testing petrophysical properties of rocks under simulated geothermal reservoir conditions. Geotech Test J 38:119–138. https://doi.org/10.1520/GTJ20140056

  92. Perrineau A, Van Der Woerd J, Gaudemer Y, Liu-Zeng J, Pik R, Tapponnier P, Thuizat R, Rongzhang Z (2011) Incision rate of the Yellow River in Northeastern Tibet constrained by 10Be and 26Al cosmogenic isotope dating of fluvial terraces: implications for catchment evolution and plateau building. Geol Soc Lond, Spec Publ 353:189–219. https://doi.org/10.1144/SP353.10

  93. Pimienta L, Sarout J, Esteban L, Piane CD (2014) Prediction of rocks thermal conductivity from elastic wave velocities, mineralogy and microstructure. Geophys J Int 197:860–874. https://doi.org/10.1093/gji/ggu034

  94. Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566–567:67–86. https://doi.org/10.1016/j.tecto.2012.07.017

  95. Popov YA, Pribnow DFC, Sass JH, Williams CF, Burkhardt H (1999) Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28:253–276. https://doi.org/10.1016/S0375-6505(99)00007-3

  96. Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160:1137–1161. https://doi.org/10.1007/PL00012565

  97. Qinghai Bureau of Geology and Mineral Resources (QBGMR) (2015) Geological map of Qinghai province 1:1,000,000.

  98. Qin Q, Zhang N, Nan P, Chai L (2011) Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis—A case study in Tengchong, China. Int J Appl Earth Obs 13:552–559. https://doi.org/10.1016/j.jag.2011.02.005

  99. Reyer D, Philipp SL (2014) Empirical relation of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling. Geoth Energ Sci 2:21–27. https://doi.org/10.5194/gtes-2-21-2014

  100. Rybach L (1988) Determination of heat production rate. In: Haenel R, Stegena L, Rybach L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Netherlands, pp 125–142

  101. Ryzhova TV, Aleksandrov KS (1965) The elastic properties of potassium-sodium feldspars. Bull (Ivz) Acad Sci USSR Geophys Ser 98(102):53–56

  102. Sass JH (1965) The thermal conductivity of fifteen feldspar specimens. J Geophys Res 70:4064–4065. https://doi.org/10.1029/JZ070i016p04064

  103. Sass I, Götz AE (2012) Geothermal reservoir characterization: a thermofacies concept. Terra Nova 24:142–147. https://doi.org/10.1111/j.1365-3121.2011.01048.x

  104. Sausse J, Fourar M, Genter A (2006) Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis. Geothermics 35:544–560. https://doi.org/10.1016/j.geothermics.2006.07.003

  105. Schön J (ed) (2015) Physical properties of rocks: Fundamentals and principles of petrophysics. Developments in Petroleum Science, 65 Elsevier, Amsterdam Netherlands (1 online resource).

  106. Shao F, Niu Y, Liu Y, Chen S, Kong J, Duan M (2017) Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 282–283:33–44. https://doi.org/10.1016/j.lithos.2017.03.002

  107. Shen X, Zhang W, Yang S, Guan Y, Jin X (1990) Heat flow evidence for the differentiated crust-mantle thermal structures of the northern and southern terranes of the Qinghai-Xizang Plateau. Bull Chin Acad Geol Sci 21:201–214 (in Chinese with English abstract)

  108. Siratovich PA, Villeneuve MC, Cole JW, Kennedy BM, Bégué F (2015) Saturated heating and quenching of three crustal rocks and implications for thermal stimulation of permeability in gerothermal reservoirs. Int J Rock Mech Min Sci 80:265–280. https://doi.org/10.1016/j.ijrmms.2015.09.023

  109. Sone H, Zoback MD (2013) Mechanical properties of shale-gas reservoir rocks—Part 1: static and dynamic elastic properties and anisotropy. Geophysics 78:D381–D392. https://doi.org/10.1190/geo2013-0050.1

  110. Sun ZX, Li BX, Wang ZL (2011) Exploration of the possibility of hot dry rock occurring in the Qinghai Gonghe Basin. Hydrogeol Eng Geol 38:119–129

  111. Tao W, Shen Z (2008) Heat flow distribution in Chinese continent and its adjacent areas. Prog Nat Sci 18:843–849. https://doi.org/10.1016/j.pnsc.2008.01.018

  112. Tapponnier P, Zhiqin X, Roger F, Meyer B, Arnaud N, Wittlinger G, Jingsui Y (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science 294:1671–1677. https://doi.org/10.1126/science.105978

  113. Tian X, Liu Z, Si S, Zhang Z (2014) The crustal thickness of NE Tibet and its implication for crustal shortening. Tectonophysics 634:198–207. https://doi.org/10.1016/j.tecto.2014.07.001

  114. Tung K, Yang HJ, Yang HY, Liu CY, Zhang JX, Wan YS, Tseng CY (2007) SHRIMP U-Pb geochronology of the zircons from the Precambrian basement of the Qilian Block and its geological significances. Chin Sci Bull 52:2687–2701. https://doi.org/10.1007/s11434-007-0356-0

  115. van Heerden WL (1987) General relations between static and dynamic moduli of rocks. Int J Rock Mech Min Sci Geomech Abstr 24:381–385. https://doi.org/10.1016/0148-9062(87)92262-5

  116. Van Wees J-D, Kronimus A, Van Putten M, Pluymaekers MPD, Mijnlieff HF, Van Hooff P, Obdam A, Kramers L (2012) Geothermal aquifer performance assessment for direct heat production—methodology and application to Rotliegend aquifer. Neth J Geosci 91:651–665. https://doi.org/10.1017/S0016774600000433

  117. Vaughan MT, Guggenheim S (1986) Elasticity of muscovite and its relationship to crystal structure. J Geophys Res 91:4657–4664. https://doi.org/10.1029/JB091iB05p04657

  118. Vinciguerra S, Trovato C, Meredith PG, Benson PM (2005) Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int J Rock Mech Min Sci 42:900–910. https://doi.org/10.1016/j.ijrmms.2005.05.022

  119. Vosteen H-D, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth Parts A/B/C 28:499–509. https://doi.org/10.1016/S1474-7065(03)00069-X

  120. Walsh JB, Decker ER (1966) Effect of pressure and saturating fluid on the thermal conductivity of compact rock. J Geophys Res 71:3053–3061. https://doi.org/10.1029/JZ071i012p03053

  121. Wang M, Guo Q, Yan W, Liu M, Cao Y, Li J, Shi W, Shang X, Ma Y (2014) Medium-low-enthalpy geothermal-electricity generation at Gonghe, Qinghai Province. Earth Sci J China Univ Geosci 39:1317–1322. https://doi.org/10.3799/dqkx.2014.113 (in Chinese with English abstract)

  122. Wang B, Li B-X, Li F-C (2015) Discussion on heat source mechanism and geothermal system of Qinghai Gonghe-Guide Basin. J Groundw Sci Eng 3:86–97

  123. Weydt LM, Heldmann C-DJ, Machel HG, Sass I (2018) From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada. Solid Earth 9:953–983. https://doi.org/10.5194/se-9-953-2018

  124. Wu CL, Gao YH, Li ZL, Lei M, Qin HP, Li MZ, Liu CH, Frost RB, Robinson PT, Wooden JL (2014) Zircon SHRIMP U-Pb dating of granites from Dulan and the chronological framework of the North Qaidam UHP belt, NW China. Sci China Earth Sci 57:2945–2965. https://doi.org/10.1007/s11430-014-4958-5

  125. Wyering LD, Villeneuve MC, Wallis IC, Siratovich PA, Kennedy BM, Gravley DM, Cant JL (2014) Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 288:76–93. https://doi.org/10.1016/j.jvolgeores.2014.10.008

  126. Xiao W, Windley BF, Yong Y, Yan Z, Yuan C, Liu C, Li J (2009) Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J Asian Earth Sci 35:323–333. https://doi.org/10.1016/j.jseaes.2008.10.001

  127. Xue JQ, Gan B, Li BX, Wang ZL (2013) Geological-geophysical characteristics of enhanced geothermal systems (hot dry rocks) in Gonghe-Guide basin. Geophys Geochem Explor 37:35–41 (in Chinese with English abstract)

  128. Yan F, Han DH (2018) Application of the power mean to modeling the elastic properties of reservoir rocks. J Geophys Eng 15:2686–2694. https://doi.org/10.1088/1742-2140/aae3be

  129. Yan W, Wang Y, Gao X, Zhang S, Ma Y, Shang X, Guo S (2013) Distribution and aggregation mechanism of geothermal energy in Gonghe basin. Northwest Geol 46:223–230 (in Chinese with English abstract)

  130. Yan Z, Guo X, Fu C, Aitchison J, Wang Z, Li J (2014) Detrital heavy mineral constraints on the Triassic tectonic evolution of the West Qinling Terrane, NW China: implications for understanding subduction of the Paleotethyan Ocean. J Geol 122:591–608. https://doi.org/10.1086/677264

  131. Yang G, Yang S, Wei L, Li Z, Li R, Xu D, Liu MF (2015) Petrogenesis and geodynamic significance of the Late Triassic Tadong adakitic pluton in West Qinling, central China. Int Geol Rev 57:1755–1771. https://doi.org/10.1080/00206814.2015.1024291

  132. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280. https://doi.org/10.1146/annurev.earth.28.1.211

  133. Zeng Y, Tang L, Wu N, Cao Y (2018) Numerical simulation of electricity generation potential from fractured granite reservoir using the MINC method at the Yangbajing geothermal field. Geothermics 75:122–136. https://doi.org/10.1016/j.geothermics.2018.04.003

  134. Zhang P-Z, Shen Z, Wang M, Gan W, Bürgmann R, Molnar P, Wang Q, Niu Z, Sun J, Wu J (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812. https://doi.org/10.1130/G20554.1

  135. Zhang HF, Chen YL, Xu WC, Liu R, Yuan HL, Liu XM (2006) Granitoids around Gonghe basin in Qinghai province petrogenesis and tectonic implications. Acta Petrol Sin 22:2910–2922 (in Chinese with English abstract)

  136. Zhang Z, Klemperer S, Bai Z, Chen Y, Teng J (2011) Crustal structure of the Paleaozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in east Tibet, China. Gondwana Res 19:994–1007. https://doi.org/10.1016/j.gr.2010.09.008

  137. Zhang Z, Li W, Wang Y, Qian B, Li K, Zhang J, Gao Y, Guo Z, You M (2015) Geological and geochemical characteristics of mafic-ultramafic intrusions in the Hualong Area, Southern Qilian Mountains and its Ni-Cu mineralization. Acta Geol Sin 89:632–644 (in Chinese with English abstract)

  138. Zhang X, Guo Q, Liu M, Luo J, Yin Z, Zhang C, Zhu M, Guo W, Li J, Zhou C (2016) Hydrogeochemical processes occurring in the hydrothermal systems of the Gonghe-Guide basin, northwestern China: critical insights from a principal components analysis (PCA). Environ Earth Sci 75:1187. https://doi.org/10.1007/s12665-016-5991-9

  139. Zhang C, Jiang G, Shi Y, Wang Z, Wang Y, Li S, Jia X, Hu S (2018a) Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai–Tibetan plateau. Geothermics 72:182–192. https://doi.org/10.1016/j.geothermics.2017.11.011

  140. Zhang C, Zhang SS, Li ST, Jia XF, Jiang GZ, Gao P, Wang YB, Hu SB (2018b) Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin, northeastern Tibetan Plateau. Chin J Geophys 61:4545–4557 (in Chinese with English abstract)

  141. Zhao XG, Wang J, Chen F, Li PF, Ma LK, Xie JL, Liu YM (2016) Experimental investigation on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics 683:124–137. https://doi.org/10.1016/j.tecto.2016.06.021

  142. Zheng SH, Wu WY, Li Y, Wang GD (1985) Late Cenozoic mammalian faunas of Guide and Gonghe basins, Qinghai Province. Vertebr Palasiat 23:89–134 (in Chinese with English abstract)

  143. Zhou W, Paulssen H (2017) P and S velocity structure in the Groningen Gas reservoir from noise interferometry. Geophys Res Lett 44(11):785–791. https://doi.org/10.1002/2017GL075592

  144. Zhu J, Hu K, Lu X, Huang X, Liu K, Wu X (2015) A review of geothermal energy resources, development, and applications in China: current status and prospects. Energy 93:466–483. https://doi.org/10.1016/j.energy.2015.08.098

  145. Zimmermann RW, Somerton WH, King MS (1986) Compressibility of porous rocks. J Geophys Res 91(12):765–777. https://doi.org/10.1029/JB091iB12p12765

Download references


The authors thank Hendrik Biewer and Alica De Witt, postgraduate students at Technische Universität Darmstadt for their support in sampling, sample preparation and measuring. Furthermore, the authors thank Qinghai Guo and his whole working group at the China University of Geosciences in Wuhan, especially Xiaobo Zhang, for their dedicated support during the field campaign. This study was partly financed by the DAAD (“Deutscher Akademischer Austauschdienst”) by means of the Federal Ministry of Education and Research. Furthermore, the authors thank for the financial support by the DFG in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070). The authors further thank the reviewers for their thoughtful and helpful comments improving the presented study.

Author information

Correspondence to Sebastian Weinert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Sustainable Utilization of Geosystems” guest edited by Ulf Hünken, Peter Dietrich and Olaf Kolditz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinert, S., Bär, K. & Sass, I. Thermophysical rock properties of the crystalline Gonghe Basin Complex (Northeastern Qinghai–Tibet-Plateau, China) basement rocks. Environ Earth Sci 79, 77 (2020). https://doi.org/10.1007/s12665-020-8808-9

Download citation


  • Gonghe Basin Complex
  • Petrophysical properties
  • Geothermal systems
  • Outcrop analogue study
  • Qinghai–Tibet Plateau
  • Reservoir conditions