Advertisement

State of the art in flow visualization in the environmental sciences

  • Roxana BujackEmail author
  • Ariane Middel
Thematic Issue
  • 114 Downloads
Part of the following topical collections:
  1. Visual Data Exploration

Abstract

Flow plays a major role in environmental sciences, because many of the Earth’s physical and biological processes involve movement. Yet, there are major differences between theoretically available and practically applied visualization techniques to represent flow. This paper surveys various techniques in computational and environmental flow visualization. Techniques from the computational flow visualization community are classified into geometric, texture-based, topology-based, and feature-based approaches. Environmental flow applications are categorized into four application domains (atmospheric science, ecology, geosciences, and urban environments). Computational and environmental visualization approaches are compared to exhibit gaps and suggest solutions on how to bridge the gap. Outcomes from this literature review will inform the development of strategic initiatives for both future flow visualization research and flow visualization in the environmental sciences.

Keywords

Flow visualization Environmental visualization State of the art 

Notes

Acknowledgements

We would like to thank Lloyd Treinish, Benjamin Jaimes, Francesca Samsel, Mark Petersen, Gregory Abram, Pascal Nardini, Divya Banesh, and Felix Raith for providing visualizations for this paper. Research presented in this article was partly funded by the German Research Foundation (DFG) as part of the IRTG 2057 “Physical Modeling for Virtual Manufacturing Systems and Processes” and by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under Project Number 20190143ER.

References

  1. Ahrens J, Geveci B, Law C, Hansen C, Johnson C (2005) 36-paraview: an end-user tool for large-data visualization. In: The visualization handbook. Elsevier, pp 717–731Google Scholar
  2. Ainsworth E (1999) Visualization of ocean colour and temperature from multi-spectral imagery captured by the Japanese adeos satellite. J Vis 2(2):195–204CrossRefGoogle Scholar
  3. Banesh D, Schoonover JA, Ahrens JP, Hamann B (2017) Extracting, visualizing and tracking mesoscale ocean eddies in two-dimensional image sequences using contours and moments. In: Workshop on visualisation in environmental sciences (EnvirVis)Google Scholar
  4. Banesh D, Wendelberger J, Petersen M, Ahrens J, Hamann B (2018) Change point detection for ocean eddy analysis.  https://doi.org/10.2312/envirvis.20181134
  5. Berres AS, Turton TL, Petersen M, Rogers DH, Ahrens JP, Rink K, Middel A, Zeckzer D, Bujack R (2017) Video compression for ocean simulation image databases. In: Workshop on visualisation in environmental sciences (EnvirVis)Google Scholar
  6. Bhatia H, Pascucci V, Bremer PT (2014) The natural helmholtz-hodge decomposition for open-boundary flow analysis. IEEE Trans Vis Comput Gr 20(11):1566–1578CrossRefGoogle Scholar
  7. Brambilla A, Carnecky R, Peikert R, Viola I, Hauser H (2012) Illustrative flow visualization: state of the art, trends and challenges. In: EG 2012 state of the art reports, pp 75–94Google Scholar
  8. Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Fleron RW, Hartl P, Kays R, Kelly JF, Robinson WD (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. BioScience 61(9):689–698CrossRefGoogle Scholar
  9. Bujack R, Dutta S, Zhang D, Günther T (2019) Objective finite-time flow topology from flowmap expansion and contraction. In: Topology-based methods in visualization (TopoInVis 2019) Nyköping, SwedenGoogle Scholar
  10. Bujack R, Hlawitschka M, Joy KI (2016) Topology-inspired Galilean invariant vector field analysis. In: 2016 IEEE pacific visualization symposium (PacificVis). IEEE, pp 72–79Google Scholar
  11. Bujack R, Hotz I, Scheuermann G, Hitzer E (2015) Moment invariants for 2D flow fields via normalization in detail. IEEE Trans Vis Comput Gr (TVCG) 21(8):916–929CrossRefGoogle Scholar
  12. Bujack R, Middel A (2016) Strategic initiatives for flow visualization in environmental sciences. In: Rink K, Middel A, Zeckzer D(eds) Workshop on visualisation in environmental sciences (EnvirVis). The Eurographics Association, pp 23–27.  https://doi.org/10.2312/envirvis.20161103
  13. Buning P, Steger JL (1985) Graphics and flow visualization in computational fluid dynamics. In: Proceedings of the American Institute of Aeronautics and Astronautics 8th computational fluid dynamics conference, pp 814–820Google Scholar
  14. Cabral B, Leedom LC (1993) Imaging vector fields using line integral convolution. In: Proceedings of the 20th annual conference on computer graphics and interactive techniques, SIGGRAPH ’93. ACM, pp 263–270Google Scholar
  15. Chen W, Guo F, Wang FY (2015) A survey of traffic data visualization. IEEE Trans Intell Transp Syst 16(6):2970–2984CrossRefGoogle Scholar
  16. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M, Harrison C, Weber GH, Krishnan H, Fogal T, Sanderson A, Garth C, Bethel EW, Camp D, Rübel O, Durant M, Favre JM, Navrátil P (2012) VisIt: an end-user tool for visualizing and analyzing very large data. In: High performance visualization–enabling extreme-scale scientific insight, pp 357–372Google Scholar
  17. Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A Fluid Dyn 2(5):765–777CrossRefGoogle Scholar
  18. De Leeuw W, Van Liere R (1998) Comparing LIC and spot noise. In: Proceedings of the conference on visualization’98. IEEE Computer Society Press, pp 359–365Google Scholar
  19. Dietrich JC, Bunya S, Westerink JJ, Ebersole BA, Smith JM, Atkinson JH, Jensen R, Resio DT, Luettich RA, Dawson C (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern louisiana and mississippi. part II: synoptic description and analysis of hurricanes katrina and rita. Mon Weather Rev 138(2):378–404CrossRefGoogle Scholar
  20. Ebling J (2006) Visualization and analysis of flow fields using clifford convolution. PhD thesis, University of Leipzig, GermanyGoogle Scholar
  21. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JR (2010) Tracking of arctic terns sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci 107(5):2078–2081CrossRefGoogle Scholar
  22. Erlebacher G, Garth C, Laramee RS, Theisel H, Tricoche X, Weinkauf T, Weiskopf D (2006) Texture and feature-based flow visualization—methodology and application. In: IEEE visualization tutorial, vol 6Google Scholar
  23. Ersoy O, Hurter C, Paulovich F, Cantareiro G, Telea A (2011) Skeleton-based edge bundling for graph visualization. IEEE Trans Vis Comput Gr 17(12):2364–2373CrossRefGoogle Scholar
  24. Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of new york city taxi trips. IEEE Trans Vis Comput Gr 19(12):2149–2158CrossRefGoogle Scholar
  25. Forssell LK, Cohen SD (1995) Using line integral convolution for flow visualization: curvilinear grids, variable-speed animation, and unsteady flows. IEEE Trans Vis Comput Gr 1(2):133–141CrossRefGoogle Scholar
  26. Grottel S, Staib J, Heyer T, Vetter B, Gumhold S (2015) Real-time visualization of urban flood simulation data for non-professionals. In: Middel A, Rink K, Weber GH (eds) Workshop on visualisation in environmental sciences (EnvirVis). The Eurographics Association, PortugalGoogle Scholar
  27. Gu ZL, Zhang YW, Cheng Y, Lee SC (2011) Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build Environ 46(12):2657–2665CrossRefGoogle Scholar
  28. Günther T, Gross M, Theisel H (2017) Generic objective vortices for flow visualization. ACM Trans Gr (TOG) 36(4):141Google Scholar
  29. Günther T, Theisel H (2018) The state of the art in vortex extraction. In: Computer graphics forum, vol 37, issue 6. Wiley Online Library, pp 149–173Google Scholar
  30. Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:1–26CrossRefGoogle Scholar
  31. Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173CrossRefGoogle Scholar
  32. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D 147(3–4):352–370CrossRefGoogle Scholar
  33. Hansen C, Johnson C (2005) The visualization handbook. Referex engineering. Butterworth-Heinemann, OxfordGoogle Scholar
  34. Helman J, Hesselink L (1989) Representation and display of vector field topology in fluid flow data sets. Computer 22(8):27–36CrossRefGoogle Scholar
  35. Hultquist JP (1992) Constructing stream surfaces in steady 3D vector fields. In: Proceedings of the 3rd conference on visualization’92. IEEE Computer Society Press, pp 171–178Google Scholar
  36. Hunt JC, Wray AA, Moin P (1988) Eddies, streams, and convergence zones in turbulent flows. In: Center for turbulence research. Proceedings of the summer program 1988. pp 193–208Google Scholar
  37. Häußler J, Stein M, Seebacher D, Janetzko H, Schreck T, Keim D (2018) Visual analysis of urban traffic data based on high-resolution and high-dimensional environmental sensor data.  https://doi.org/10.2312/envirvis.20181138
  38. Interrante V, Grosch C (1997) Strategies for effectively visualizing 3D flow with volume LIC. In: Proceedings of the 8th conference on Visualization’97. IEEE Computer Society Press, pp 421–ffGoogle Scholar
  39. Jaimes B, Shay LK (2010) Near-inertial wave wake of hurricanes katrina and rita over mesoscale oceanic eddies. J Phys OceanogR 40(6):1320–1337CrossRefGoogle Scholar
  40. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94CrossRefGoogle Scholar
  41. Jobard B, Lefer W (1997) Creating evenly-spaced streamlines of arbitrary density. In: Lefer W, Grave M (eds) Visualization in scientific computing ’97. Eurographics, Springer, Vienna, pp 43–55CrossRefGoogle Scholar
  42. Jobard B, Lefer W (1997) The motion map: efficient computation of steady flow animations. In: Proceedings. Visualization’97 (Cat. No. 97CB36155). IEEE, pp 323–328Google Scholar
  43. Kaufmann V (2012) The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Äusseres Hochebenkar rock glacier (Austria). Aust J Earth Sci 105(2):63–77Google Scholar
  44. Keim DA, Mansmann F, Schneidewind J, Thomas J, Ziegler H (2008) Visual analytics: scope and challenges. Springer, New YorkGoogle Scholar
  45. Kenwright D, Henze C, Levit C (1999) Feature extraction of separation and attachment lines. IEEE Trans Vis Comput Gr 5(2):135–144CrossRefGoogle Scholar
  46. Kiu MH, Banks DC (1996) Multi-frequency noise for LIC. In: Proceedings of the 7th conference on visualization’96. IEEE Computer Society Press, pp 121–126Google Scholar
  47. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott C et al. (2012) Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599CrossRefGoogle Scholar
  48. Koutek M, van der Neut I (2018) Web-based 3D meteo visualization: 3D rendering farms from a new perspective.  https://doi.org/10.2312/envirvis.20181132
  49. Krishnan H, Garth C, Joy K (2009) Time and streak surfaces for flow visualization in large time-varying data sets. IEEE Trans Vis Comput Gr 15(6):1267–1274CrossRefGoogle Scholar
  50. Laramee RS, Hauser H, Doleisch H, Vrolijk B, Post FH, Weiskopf D (2004) The state of the art in flow visualization: dense and texture-based techniques. Comput Gr Forum 23:2004CrossRefGoogle Scholar
  51. Laramee RS, Hauser H, Zhao L, Post FH (2007) Topology-based flow visualization, the state of the art. In: Hauser H, Hagen H, Theisel H (eds) Topology-based methods in visualization. Mathematics and visualization, Springer, Berlin, Heidelberg, pp 1–19Google Scholar
  52. Liu Y, Kang C, Gao S, Xiao Y, Tian Y (2012) Understanding intra-urban trip patterns from taxi trajectory data. J Geogr syst 14(4):463–483CrossRefGoogle Scholar
  53. Lu H, Porte-Agel F (2011) Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer. Phys Fluids (1994-present) 23(6):065101CrossRefGoogle Scholar
  54. Max N, Becker B (1995) Flow visualization using moving textures. Technical report, Lawrence Livermore National Lab., CA (United States)Google Scholar
  55. Max N, Becker B, Crawfis R (1993) Flow volumes for interactive vector field visualization. In: Proceedings of the 4th conference on visualization’93. IEEE Computer Society, pp 19–24Google Scholar
  56. McLoughlin T, Laramee RS, Peikert R, Post FH, Chen M (2009) Over two decades of integration-based, geometric flow visualization. In: EG 2009—state of the art reports, pp 73–92Google Scholar
  57. McLoughlin T, Laramee RS, Zhang E (2009) Easy integral surfaces: a fast, quad-based stream and path surface algorithm. In: Proceedings of the 2009 computer graphics international conference. ACM, pp 73–82Google Scholar
  58. McPherson A, Maltrud M (1998) Poptex: interactive ocean model visualization using texture mapping hardware. In: Proceedings of the conference on Visualization’98. IEEE Computer Society Press, pp 471–474Google Scholar
  59. Merzkirch W (2012) Flow visualization. Elsevier, New YorkGoogle Scholar
  60. Middel A, Häb K, Brazel AJ, Martin CA, Guhathakurta S (2014) Impact of urban form and design on mid-afternoon microclimate in phoenix local climate zones. Landsc Urban Plan 122:16–28CrossRefGoogle Scholar
  61. Molnar S, Gruchalla K (2018) Visualizing electrical power systems as flow fields.  https://doi.org/10.2312/envirvis.20181139
  62. Nardini P, Böttinger M, Scheuermann G, Schmidt M (2017) Visual study of the benguela upwelling system using pathline predicates. In: EnvirVis17: workshop on visualisation in environmental sciences. Eurographics Association, pp 19–23Google Scholar
  63. Netzel R, Weiskopf D (2013) Texture-based flow visualization. Comput Sci Eng 15(6):96–102CrossRefGoogle Scholar
  64. Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In: Deep sea research and oceanographic abstracts. Elsevier, vol 17, pp 445–454Google Scholar
  65. Perry A, Chong M (1987) A description of eddying motions and flow patterns using critical-point concepts. Ann Rev Fluid Mech 19(1):125–155CrossRefGoogle Scholar
  66. Petersen MR, Williams SJ, Maltrud ME, Hecht MW, Hamann B (2013) A three-dimensional eddy census of a high-resolution global ocean simulation. J Geophys Res Oceans 118(4):1759–1774CrossRefGoogle Scholar
  67. Pobitzer A, Peikert R, Fuchs R, Schindler B, Kuhn A, Theisel H, Matkovic K, Hauser H (2011) The state of the art in topology-based visualization of unsteady flow. Comput Gr Forum 30(6):1789–1811CrossRefGoogle Scholar
  68. Post FH, Post FJ, Van Walsum T, Silver D (1995) Iconic techniques for feature visualization. In: Proceedings of the 6th conference on visualization’95. IEEE Computer Society, p 288Google Scholar
  69. Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: feature extraction and tracking. Comput Gr Forum 22(4):775–792CrossRefGoogle Scholar
  70. Powell MD, Murillo S, Dodge P, Uhlhorn E, Gamache J, Cardone V, Cox A, Otero S, Carrasco N, Annane B (2010) Reconstruction of hurricane katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng 37(1):26–36CrossRefGoogle Scholar
  71. Raij AB, Johnsen K, Dickerson RF, Lok BC, Cohen MS, Duerson M, Pauly RR, Stevens AO, Wagner P, Lind DS (2007) Computation of localized flow for steady and unsteady vector fields and its applications. IEEE Trans Vis Comput Gr 13(4):641–651CrossRefGoogle Scholar
  72. Raith F, N. Roeber HH, Scheuermann G (2017) Visual eddy analysis of the agulhas current. In: EnvirVis17: workshop on visualisation in environmental sciences. Eurographics AssociationGoogle Scholar
  73. Rocha A, Silva JD, Alim U, Sousa MC (2017) Multivariate visualization of oceanography data using decals. In: Workshop on visualisation in environmental sciences (EnvirVis)Google Scholar
  74. Roth M (2000) Automatic extraction of vortex core lines and other line-type features for scientific visualization. PhD Dissertation No. 13673, ETH Zurich. Published by Hartung-Gorre Verlag, Konstanz, ISBN 3-89649-582-8Google Scholar
  75. Salzbrunn T, Jänicke H, Wischgoll T, Scheuermann G (2008) The state of the art in flow visualization: partition-based techniques. In: Simulation and visualization 2008 proceedingsGoogle Scholar
  76. Samsel F, Petersen M, Abram G, Turton TL, Rogers D, Ahrens J (2015) Visualization of ocean currents and eddies in a high-resolution global ocean-climate model. In: Proceedings of the international conference on high performance computing, networking, storage and analysis, vol 2Google Scholar
  77. Samsel F, Turton TL, Wolfram P, Bujack R (2017) Intuitive colormaps for environmental visualization. In: Bujack R, Middel A, Rink K, Zeckzer D (eds) Workshop on visualisation in environmental sciences (EnvirVis). The Eurographics Association, pp 55–59.  https://doi.org/10.2312/envirvis.20171105
  78. Sauer F, Yu H, Ma KL (2014) Trajectory-based flow feature tracking in joint particle/volume datasets. IEEE Trans Vis Comput Gr 20(12):2565–2574CrossRefGoogle Scholar
  79. Scheepens R, Willems N, van de Wetering H, Van Wijk JJ (2011) Interactive visualization of multivariate trajectory data with density maps. In: 2011 IEEE pacific visualization symposium. IEEE, pp 147–154Google Scholar
  80. Scheuermann G, Hagen H, Krüger H, Menzel M, Rockwood A (1997) Visualization of higher order singularities in vector fields. In: Proceedings of the 8th conference on visualization’97. IEEE Computer Society Press, pp 67–74Google Scholar
  81. Schlemmer M (2011) Pattern recognition for feature based and comparative visualization. Ph.D. thesis, Universität Kaiserslautern, GermanyGoogle Scholar
  82. Schlitzer R (2002) Interactive analysis and visualization of geoscience data with ocean data view. Comput Geosci 28(10):1211–1218CrossRefGoogle Scholar
  83. Schroeder WJ, Volpe CR, Lorensen WE (1991) The stream polygon: a technique for 3D vector field visualization. In: Proceedings of the 2nd conference on visualization’91. IEEE Computer Society Press, pp 126–132Google Scholar
  84. Shamoun-Baranes J, van Loon EE, Purves RS, Speckmann B, Weiskopf D, Camphuysen CJ (2011) Analysis and visualization of animal movement. Biol Lett 8(1):6–9CrossRefGoogle Scholar
  85. Shen HW, Johnson CR (1994) Differential volume rendering: a fast volume visualization technique for flow animation. In: Proceedings visualization’94. IEEE, pp 180–187Google Scholar
  86. Shen HW, Johnson CR, Ma KL (1996) Visualizing vector fields using line integral convolution and dye advection. In: Proceedings of 1996 symposium on volume visualization. IEEE, pp 63–70Google Scholar
  87. Shen HW, Kao DL (1997) Uflic: a line integral convolution algorithm for visualizing unsteady flows. In: Proceedings of the 8th conference on visualization’97. IEEE Computer Society Press, pp 317–ffGoogle Scholar
  88. Slingsby A, van Loon E (2017) Visual characterisation of temporal occupancy for movement ecology. In: Karsten R, Ariane M, Dirk Z, Roxana B (eds) Workshop on Visualisation in Environmental Sciences (EnvirVis). The Eurographics Association.  https://doi.org/10.2312/envirvis.20171098
  89. Smits AJ, Lim TT (2000) Flow visualization techniques and examples. Imperil College Press, LondonCrossRefGoogle Scholar
  90. Stalling D, Hege HC (1995) Fast and resolution independent line integral convolution. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, pp 249–256Google Scholar
  91. Theisel H (2002) Designing 2D vector fields of arbitrary topology. In: Computer graphics forum, vol 21. Wiley Online Library, pp 595–604Google Scholar
  92. Treinish LA (1993) Visualization of stratospheric ozone depletion and the polar vortex. In: IEEE conference on visualization, 1993. Visualization’93, Proceedings. IEEE, pp 391–396Google Scholar
  93. Tricoche X, Scheuermann G, Hagen H (2000) A topology simplification method for 2D vector fields. In: Visualization 2000. Proceedings. IEEE, pp 359–366Google Scholar
  94. Turk G, Banks D (1996) Image-guided streamline placement. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM, pp 453–460Google Scholar
  95. Ueng SK, Sikorski C, Ma KL (1996) Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Trans Vis Comput Gr 2(2):100–110CrossRefGoogle Scholar
  96. Van Hooff T, Blocken B (2010) Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: a case study for the amsterdam ArenA stadium. Environ Model Softw 25(1):51–65CrossRefGoogle Scholar
  97. Van Wijk JJ (1991) Spot noise texture synthesis for data visualization. In: ACM siggraph computer graphics, vol 25. ACM, pp 309–318Google Scholar
  98. Verma V, Kao D, Pang A (2000) A flow-guided streamline seeding strategy. In: Proceedings visualization 2000. VIS 2000 (Cat. No. 00CH37145). IEEE, pp 163–170Google Scholar
  99. Wang Z, Seidel HP, Weinkauf T (2016) Multi-field pattern matching based on sparse feature sampling. IEEE Trans Vis Comput Gr 22(1):807–816CrossRefGoogle Scholar
  100. Wegenkittl R, Gröller E (1997) Fast oriented line integral convolution for vector field visualization via the internet. In: Proceedings of the 8th conference on visualization’97. IEEE Computer Society Press, pp 309–316Google Scholar
  101. Weinkauf T, Theisel H, Shi K, Hege HC, Seidel HP (2005) Extracting higher order critical points and topological simplification of 3D vector fields. In: Proceedings of IEEE visualization 2005. Minneapolis, USA, pp 559–566Google Scholar
  102. Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Phys D Nonlinear Phenom 48(2–3):273–294CrossRefGoogle Scholar
  103. Windyty SE (2016) wind map & forecast. https://www.windyty.com. Accessed 01 Jan 2020
  104. Williams S, Hecht M, Petersen M, Strelitz R, Maltrud M, Ahrens J, Hlawitschka M, Hamann B (2011) Visualization and analysis of eddies in a global ocean simulation. In: Computer graphics forum, vol 30. Wiley Online Library, pp 991–1000Google Scholar
  105. Wischgoll T, Scheuermann G (2001) Detection and visualization of closed streamlines in planar flows. IEEE Trans Vis Comput Gr 7(2):165–172CrossRefGoogle Scholar
  106. Wittenbrink CM, Pang AT, Lodha SK (1996) Glyphs for visualizing uncertainty in vector fields. IEEE Trans Vis Comput Gr 2(3):266–279CrossRefGoogle Scholar
  107. Woodring J, Petersen M, Schmeißer A, Patchett J, Ahrens J, Hagen H (2016) In situ eddy analysis in a high-resolution ocean climate model. IEEE Trans Vis Comput Gr 22(1):857–866CrossRefGoogle Scholar
  108. Wu Z, Xu Y, Wang W, Hu R (2013) Review of shock wave detection method in CFD post-processing. Chin J Aeronaut 26(3):501–513CrossRefGoogle Scholar
  109. Zhang F, Tao D (2013) Effects of vertical wind shear on the predictability of tropical cyclones. J Atmos Sci 70(3):975–983CrossRefGoogle Scholar
  110. Zöckler M, Stalling D, Hege HC (1996) Interactive visualization of 3D-vector fields using illuminated stream lines. In: Visualization’96. Proceedings. IEEE, pp 107–113Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Data Science at Scale TeamLos Alamos National LaboratoryLos AlamosUSA
  2. 2.School of Arts, Media and EngineeringArizona State UniversityTempeUSA

Personalised recommendations