Advertisement

Environmental Earth Sciences

, 78:626 | Cite as

Identifying groundwater discharge to an Atlantic coastal lagoon (Oualidia, Central Morocco) by means of salinity and radium mass balances

Karstic groundwater discharge to the coastal lagoon of Oualidia
  • Younes FakirEmail author
  • Christelle Claude
  • Hicham El Himer
Original Article
  • 59 Downloads

Abstract

Radium isotopes, 223Ra and 224Ra, and salinity measurements were used to assess submarine groundwater discharge from a karstic aquifer system into a coastal lagoon located at Oualidia (Morocco), on the Atlantic shoreline. The Oualidia lagoon is classified as a Ramsar area owing to its ecological significance. Groundwater discharge to the lagoon occurs as intertidal springs, submarine springs and probably diffuse leakage. Groundwater sources and discharge fluxes were determined using mass balance calculations following single and multi-box approaches. Calculated flow rates varied from 0.2 ± 0.2 to 1.2 ± 0.6 m3 s−1. The single-box model can be considered representative enough of water cycling and mixing within the Oualidia lagoon. However, a certain complexity of the hydrological processes should be taken into account as the discharge varies from low to high tide periods. The discharge amount suggests that the Oualidia lagoon may contribute significantly to the regional karstic discharge. Both the regional geological structure and the piezometric map indicate a convergence of groundwater to the area of the lagoon which is located in the bottom of a large geological depression. It is deduced that a close relationship exists between the karst development and the lagoon.

Keywords

Submarine discharge Springs Karst aquifer Tides Box models 

Notes

Acknowledgements

The project was funded by (i) WP3/MERMEX/MISTRALS program and is a contribution to the international LOICZ program, (ii) ANR-MED-SGD (ANR-15-CE01-0004). The authors are grateful for the support of the GEOHYD laboratory of Cadi Ayyad University. The authors would like to thank Alain Véron for improving the quality of the manuscript.

References

  1. Baudron P, Cockenpot S, Lopez-Castejon F et al (2015) Combining radon, short-lived radium isotopes and hydrodynamic modeling to assess submarine groundwater discharge from an anthropized semiarid watershed to a Mediterranean lagoon (Mar Menor, SE Spain). J Hydrol 525:55–71.  https://doi.org/10.1016/j.jhydrol.2015.03.015 CrossRefGoogle Scholar
  2. Beaubrun PC (1976) Les huîtres au Maroc et l’ostréiculture dans la lagune d’Oualidia. Bulletin de l’Institut de Pêches Maritimes Maroc 22:13–143Google Scholar
  3. Beck AJ, Rapaglia JP, Cochran JK, Bokuniewicz HJ (2007) Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Mar Chem 106:419–441CrossRefGoogle Scholar
  4. Bobbink R, Whigham DF, Beltman B, Verhoeven JTA (2006) Wetland Functioning in Relation to Biodiversity Conservation and Restoration. In: Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (eds) Wetlands: functioning, biodiversity conservation, and restoration. Ecological Studies (Analysis and Synthesis), vol 191. Springer, Berlin.  https://doi.org/10.1007/978-3-540-33189-6_1 CrossRefGoogle Scholar
  5. Burnett WC, Kim G, Lane-Smith D (2001) A continuous monitor for assessment of 222Rn in the coastal ocean. J Radio Anal Nucl Chem 249(1):167–172.  https://doi.org/10.1023/A:1013217821419 CrossRefGoogle Scholar
  6. Cable JE, Burnett WC, Chanton JP, Weatherly GL (1996) Estimating groundwater discharge into northeastern Gulf of Mexico using radon-222. Earth Planet Sci Lett 144:591–604CrossRefGoogle Scholar
  7. Candela L, Igel WV, Elorzac FJ, Aronicad G (2009) Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). J Hydrol 376(3–4):510–527.  https://doi.org/10.1016/j.jhydrol.2009.07.057 CrossRefGoogle Scholar
  8. Carruesco C (1989) Genèse et évolution à l’holocène de trois lagunes de la façade Atlantique: Moulay Bousseleham, Oualidia (Maroc), lagune d’Arcachon (France). PhD dissertation. University of Bordeaux 1, BordeauxGoogle Scholar
  9. Cerda-Domenech M, Rodellas V, Folch A, Garcia-Orellana J (2017) Constraining the temporal variations of Ra isotopes and Rn in the groundwater end-member: implications for derived SGD estimates. Sci Total Environ 595:849–857CrossRefGoogle Scholar
  10. Claude C, Cockenpot S, Arfib B, Meulé S, Radakovitch O (2019) Accuracy and sensitivity of radium mass balance in assessing karstic submarine discharge in the stratified Calanque of Port-Miou (Mediterranean Sea). J Hydrol 578:124034.  https://doi.org/10.1016/j.jhydrol.2019.124034 CrossRefGoogle Scholar
  11. Corbett DR, Burnett WC, Cable PH, Clark SB (1998) A multiple approach to the determination of radon fluxes from sediments. J Radioanal Nucl Chem 236(1):247–253CrossRefGoogle Scholar
  12. El Himer H, Fakir Y, Stigter TY, Le Page M, El Mandour A, Ribeiro L (2013) Assessment of groundwater vulnerability to pollution of a wetland watershed. The case study of the Oualidia-Sidi Moussa wetland, Morocco. Aquat Ecosyst Health Manag 16:205–215.  https://doi.org/10.1080/14634988.2013.788427 CrossRefGoogle Scholar
  13. Fakir Y (2001) Some hydrogeological aspects of the Plioquaternary aquifer in the Sahel between Beddouza cape and Oualidia, (Province of Safi-Morocco). Bull d’Hydrogéologie 19:3–16Google Scholar
  14. Fakir Y, Razack M (2003) Hydraulic characterization of a Sahelian coastal aquifer using the ocean tide effect. Hydrol Sci J 48(3):441–454CrossRefGoogle Scholar
  15. Fakir Y, El Mernissi M, Kreuser T, Berjamy B (2002) Natural tracers approach to characterise groundwater in the coastal Sahel of Oualidia (Morocco). Environ Geol 43(1–2):197–202Google Scholar
  16. Ferrarin C, Rapaglia J, Zaggia L, Umgiesser G, Zuppi GM (2008) Coincident application of a mass balance of radium and a hydrodynamic model for the seasonal quantification of groundwater flux into the Venice Lagoon, Italy. Mar Chem 112:179–188CrossRefGoogle Scholar
  17. Garcia-Solsona E, Garcia-Orellana J, Masqué P, Dulaiova H (2008) Uncertainties associated with 223Ra and 224Ra measurements in water via a delayed coincidence counter (RaDeCC). Mar Chem 109(3–4):198–219.  https://doi.org/10.1016/j.marchem.2007.11.006 CrossRefGoogle Scholar
  18. Gattacceca JC, Mayer A, Cucco A, Claude C, Radakovitch O, Vallet-Coulomb C, Hamelin B (2011) Submarine groundwater discharge in a subsiding coastal lowland: a 226Ra and 222Rn investigation in the Southern Venice lagoon. Appl Geochem 26(5):907–920.  https://doi.org/10.1016/j.apgeochem.2011.03.001 CrossRefGoogle Scholar
  19. Giorgi F, Lionello P (2007) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104.  https://doi.org/10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  20. Gonneea ME, Charette MA, Liu Q, Herrera-Silveira JA, Morales-Ojeda SM (2014) Trace element geochemistry of groundwater in a karst subterranean estuary (Yucatan Peninsula, Mexico). Geochim Cosmochim Acta 132:31–49.  https://doi.org/10.1016/j.gca.2014.01.037 CrossRefGoogle Scholar
  21. Hilmi K, Koutitonsky VG, Orbi A, Lakhdar J, Chagdali M (2005) Oualidia lagoon, Morocco: an estuary without a river. Afr J Aquat Sci 30(1):1–10CrossRefGoogle Scholar
  22. Klove B, Ala-Aho P, Bertrand G, Gurdak JJ, Kværner J, Muotka T, Mykrä H, Preda E, Rossi P, Uvo CB, Velasco E, Pulido-Velazquez M (2014) Climate change impacts on groundwater and dependent ecosystems. J Hydrol 518(Part B):250–266.  https://doi.org/10.1016/j.jhydrol.2013.06.037 CrossRefGoogle Scholar
  23. Kluge T, von Rohden C, Sonntag P, Lorenz S, Wieser M, Aeschbach-Hertig W, Ilmberger J (2012) Localising and quantifying groundwater inflow into lakes using high-precision 222Rn profiles. J Hydrol 450–451:70–81CrossRefGoogle Scholar
  24. Li YH, Gregory S (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim Cosmochim Acta 38:703–714CrossRefGoogle Scholar
  25. Li X, Bellerby R, Craft C, Widney SE (2018) Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts 1(1):1–15.  https://doi.org/10.1139/anc-2017-0001 CrossRefGoogle Scholar
  26. Liu Q, Mou X (2016) Interactions between surface water and groundwater: key processes in ecological restoration of degraded coastal wetlands caused by reclamation. Wetlands 36(Suppl 1):95.  https://doi.org/10.1007/s13157-014-0582-6 CrossRefGoogle Scholar
  27. Luo X, Jiao J, Moore WS, Lee CM (2014) Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Mar Pollut Bull 82(1–2):144–154.  https://doi.org/10.1016/j.marpolbul.2014.03.005 CrossRefGoogle Scholar
  28. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long–term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44(5–6):1437–1456.  https://doi.org/10.1007/s00382-015-2487-3 CrossRefGoogle Scholar
  29. Martens CS, Klump JV, Kipphut GW (1980) Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements. Science 208(4441):285–288CrossRefGoogle Scholar
  30. Mejías M, Ballesteros BJ, Antón-Pacheco C, Domínguez JA, Garcia-Orellana J, Garcia-Solsona E, Masqué P (2012) Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J Hydrol 464(465):27–40.  https://doi.org/10.1016/j.jhydrol.2012.06.020 CrossRefGoogle Scholar
  31. Michael HA, Charette MA, Harvey CF (2011) Patterns and variability of groundwater flow and radium activity at the coast: a case study from Waquoit Bay. Massachusetts. Mar Chem 127:100–114CrossRefGoogle Scholar
  32. Mitsch WJ, Bernal B, Hernandez ME (2015) Ecosystem services of wetlands. Int J Biodivers Sci Ecosyst Serv Manag 11(1):1–4.  https://doi.org/10.1080/21513732.2015.1006250 CrossRefGoogle Scholar
  33. Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47:1545–1553CrossRefGoogle Scholar
  34. Montiel D, Dimova N, Andreo B, Prieto J, Garcia-Orellanac J, Rodellas V (2018) Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: challenges and solutions. J Hydrol 557:222–242.  https://doi.org/10.1016/j.jhydrol.2017.12.036 CrossRefGoogle Scholar
  35. Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614CrossRefGoogle Scholar
  36. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125CrossRefGoogle Scholar
  37. Moore WS (2000) Ages of continental shelf waters determined from 223Ra and 224Ra. J Geophys Res 105(9):22117–22122CrossRefGoogle Scholar
  38. Moore WS, Blanton JO, Joye SB (2006) Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J Geophys Res.  https://doi.org/10.1029/2005jc003041 CrossRefGoogle Scholar
  39. Moore WS, Beck M, Riedel T, Rutgers van der Loeff M, Dellwig O, Shaw TJ, Schetger B, Brumsack H-J (2011) Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea. Geochim Cosmochim Acta 75:6535–6555CrossRefGoogle Scholar
  40. Rapaglia J, Ferrarin C, Zaggia L, Moore WS, Umgiesser G, Garcia-Solsona E, Garcia-Orellana J, Masque P (2010) Investigation of residence time and groundwater flux in Venice Lagoon: comparing radium isotope and hydrodynamical models. J Environ Radioact 101:571–581CrossRefGoogle Scholar
  41. Rodellas V, Garcia-Orellana J, Garcia-Solsona E, Masque P, Dominguez JA, Ballesteros BJ, Mejias M, Zarroca M (2012) Quantifying groundwater discharge from different sources into a Mediterranean wetland by using 222Rn and Ra isotopes. J Hydrol 466–467:11–22CrossRefGoogle Scholar
  42. Santos IR, Eyre BD, Huettel M (2012) The driving forces of pore water and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci 98:1–15CrossRefGoogle Scholar
  43. Schuyt KD (2005) Economic consequences of wetland degradation for local populations in Africa. Ecol Econ 53:177–190.  https://doi.org/10.1016/j.ecolecon.2004.08.003 CrossRefGoogle Scholar
  44. Stieglitz TC, Van Beek P, Souhaut M, Cook PG (2013) Karstic groundwater discharge and seawater recirculation through sediments in shallow coastal Mediterranean lagoons, determined from water, salt and radon budgets. Mar Chem 156:73–84.  https://doi.org/10.1016/j.marchem.2013.05.005 CrossRefGoogle Scholar
  45. Stigter TY, Nunes JP, Pisani B, Fakir Y et al (2014) Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg Environ Change 14:41–56.  https://doi.org/10.1007/s10113-012-0377-3 CrossRefGoogle Scholar
  46. Swarzenski PW, Izbicki JA (2009) Examining coastal exchange processes within a sandy beach using geochemical tracers, seepage meters and electrical resistivity. Estuarine Coastal Shelf Sci 83:77–89.  https://doi.org/10.1016/j.ecss.2009.03.027 CrossRefGoogle Scholar
  47. Swarzenski PW, Dulai H, Kroeger KD et al (2017) Observations of nearshore groundwater discharge: kahekili Beach Park submarine springs, Maui, Hawaii. J Hydrol Reg Stud 11:147–165.  https://doi.org/10.1016/j.ejrh.2015.12.056 CrossRefGoogle Scholar
  48. Tamborski J, Bejannin S, Garcia-Orellana J, Souhaut M, Charbonnier C, Anschutz P, Pujo-Pay M, Conan P, Crispi O, Monnin C, Stieglitz T, Rodellas V, Andriosa A, Claude C, Van Beek P (2018) A comparison between water circulation and terrestrially-driven dissolved silica fluxes to the Mediterranean Sea traced using radium isotopes. Geochim Cosmochim Acta 238(20):496–515CrossRefGoogle Scholar
  49. Verones F, Bartl K, Pfister S, Vílchez RJ, Hellweg S (2012) Modeling the local biodiversity impacts of agricultural water use: case study of a Wetland in the Coastal Arid Area of Peru. Environ Sci Technol 46(9):4966–4974.  https://doi.org/10.1021/es204155g CrossRefGoogle Scholar
  50. Webster IT, Hancock GJ, Murray A (1995) Modelling the effect of salinity on radium desorption from sediments. Geochim Cosmochim Acta 59(12):2469–2476CrossRefGoogle Scholar
  51. Weisrock A, Fontugne M (1991) Upper Pleistocene and Holocene coastal dune morphogenesis in the Atlantic Moroccan “Oulja”. Quaternaire 2(3/4):164–175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology, Faculty of Sciences SemlaliaCadi Ayyad UniversityMarrakechMorocco
  2. 2.Aix Marseille Univ, CNRS, IRD, INRA, Coll FranceCEREGEAix-En-ProvenceFrance

Personalised recommendations