Environmental Earth Sciences

, 78:627 | Cite as

Exploring the diversity and conservation status of tree species with TreeeX

  • Stefan JänickeEmail author
  • Emily Beech
  • Malin Rivers
Thematic Issue
Part of the following topical collections:
  1. Visual Data Exploration


The GlobalTreeSearch database provides the names of all tree species known to science and the countries where these trees grow. TreeeX is a visual exploration system that supports multifaceted analyses of the GlobalTreeSearch data. Investigating research questions on biodiversity and conservation on a global or national scale are visually supported by interactive choropleth maps that color countries according to frequency, diversity or uniqueness of prevalent tree species. By combining the GlobalTreeSearch and ThreatSearch data sets, additional information on the conservation status of trees can be visualized globally and nationally through TreeeX. Similarities and differences in tree diversity, endemism and conservation status to other countries can be analyzed in detail. Several examples outline the system’s capability of delivering insights concerning the geographical diversity of tree species.


TreeeX BGCI Biodiversity Conservation 



  1. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):1–55 Art129CrossRefGoogle Scholar
  2. Andrienko N, Andrienko G (2005) Exploratory analysis of spatial and temporal data: a systematic approach. Springer, BerlinGoogle Scholar
  3. Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreesearch: the first complete global database of tree species and country distributions. J Sustain For 36(5):454–489CrossRefGoogle Scholar
  4. BGCI (2018a) GlobalTreeSearch online database. Botanic gardens conservation international. Richmond, U.K. Accessed 07 Dec 2018
  5. BGCI (2018b) ThreatSearch online database. Botanic gardens conservation international. Richmond, U.K. Accessed 07 Dec 2018
  6. Borg I, Groenen P (2005) Modern multidimensional scaling: theory and applications. Springer, BerlinGoogle Scholar
  7. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35(7):1187–1201CrossRefGoogle Scholar
  8. Chertov O, Komarov A, Mikhailov A, Andrienko G, Andrienko N, Gatalsky P (2005) Geovisualization of forest simulation modelling results: a case study of carbon sequestration and biodiversity. Comput Electron Agric 49(1):175–191CrossRefGoogle Scholar
  9. Clark ML, Roberts DA, Clark DB (2005) Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens Environ 96(3):375–398CrossRefGoogle Scholar
  10. Condit R, Robinson WD, Ibáñez R, Aguilar S, Sanjur A, Martínez R, Stallard RF, García T, Angehr GR, Petit L, Wright SJ, Robinson TR, Heckadon S (2001) The Status of the Panama Canal Watershed and Its Biodiversity at the Beginning of the 21st CenturyLong-term ecological studies reveal a diverse flora and fauna near the Panama Canal, harbored within a corridor of forest stretching from the Caribbean to the Pacific, but deforestation, land degradation, erosion, and overhunting remain threats. BioScience 51(5):389–398CrossRefGoogle Scholar
  11. Debinski D, Kindscher K, Jakubauskas M (1999) A remote sensing and GIS-based model of habitats and biodiversity in the Greater Yellowstone Ecosystem. Int J Remote Sens 20(17):3281–3291CrossRefGoogle Scholar
  12. Du Puy DJ, Moat J (1998) Vegetation mapping and classification in Madagascar (using GIS): implications and recommendations for the conservation of biodiversity. In: Cutler DF, Huxley CR, Lock JM (eds) Chorology, taxonomy and ecology of the floras of Africa and Madagascar. Royal Botanic Gardens, Kew, pp 97–117Google Scholar
  13. Fitzjohn RG, Pennell MW, Zanne AE, Stevens PF, Tank DC, Cornwell WK (2014) How much of the world is woody? J Ecol 102(5):1266–1272CrossRefGoogle Scholar
  14. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-Century forest cover change. Science 342(6160):850–853CrossRefGoogle Scholar
  15. Heiden U, Holzwarth S, Pinnel N, Reichmuth A, Raczko E, Heurich M, Müller J, Wang Z, Skidmore A, Ali A, Wang T, Darvishzadeh R, Wegmann M (2016) Laboratory for essential biodiversity variables (EBV) Concepts—the data pool initiative for the bohemian forest ecosystem. In: Living Planet Symposium 2016.
  16. Jänicke S, Heine C, Scheuermann G (2013) GeoTemCo: comparative visualization of geospatial-temporal data with clutter removal based on dynamic delaunay triangulations. In: Computer vision, imaging and computer graphics. Theory and application. Springer, pp 160–175Google Scholar
  17. Jänicke S, Heine C, Stockmann R, Scheuermann G (2012) Comparative visualization of geospatial-temporal data. In: Proceedings of the international conference on computer graphics theory and applications and international conference on information visualization theory and applications (VISIGRAPP 2012), pp 613–625Google Scholar
  18. Jänicke S, Scheuermann G (2014) Utilizing GeoTemCo for Visualizing Environmental Data. In: Kolditz O, Rink K, Scheuermann G (eds) Workshop on visualisation in environmental Sciences (EnvirVis). The Eurographics AssociationGoogle Scholar
  19. Kato T, Kato A, Okamura N, Kanai T, Suzuki R, Shirai Y (2015) Musasabi: 2D/3D intuitive and detailed visualization system for the forest. In: ACM SIGGRAPH 2015 Posters, SIGGRAPH ’15. ACM, New York, pp 79:1–79:1Google Scholar
  20. Kim DH, Sexton JO, Noojipady P, Huang C, Anand A, Channan S, Feng M, Townshend JR (2014) Global, landsat-based forest-cover change from 1990 to 2000. Remote Sens Environ 155:178–193CrossRefGoogle Scholar
  21. Madden M (2004) Vegetation modeling, analysis and visualization in US National Parks. Int Arch Photogr Remote Sens 35:1287–1293Google Scholar
  22. Newton A, Oldfield S, Rivers M, Mark J, Schatz G, Garavito NT, Cantarello E, Golicher D, Cayuela L, Miles L et al (2015) Towards a global tree assessment. Oryx 49(3):410–415CrossRefGoogle Scholar
  23. Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G‘, Costa FRC, de Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez G, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Ramos M, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Muñoz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski B, Salgado-Negret B, Schietti J, Simões M, Sinclair FL, Souza PF, Souza FC, Stropp J, ter Steege H, Swenson NG, Thonicke K, Toledo M, Uriarte M, van der Hout P, Walker P, Zamora N, Peña Claros M (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24(11):1314–1328CrossRefGoogle Scholar
  24. Reckziegel M, Cheema MF, Scheuermann G, Jänicke S (2018) Predominance tag maps. IEEE Trans Vis Comput Gr 24(6):1893–1904CrossRefGoogle Scholar
  25. Rivers M (2017) The global tree assessment: red listing the world’s trees. BGJournal 14:16–19Google Scholar
  26. Ruefenacht B, Finco M, Nelson M, Czaplewski R, Helmer E, Blackard J, Holden G, Lister A, Salajanu D, Weyermann D, Winterberger K (2008) Conterminous U.S. and Alaska forest type mapping using forest inventory and analysis data. Photogr Eng Remote Sens 74(11):1379–1388CrossRefGoogle Scholar
  27. Setturu B, Ramachandra T (2016) Visualization of landscape dynamics in National Parks of Central Western Ghats. In: Proceedings of 10th Biennial Lake Conference 2016, pp 28–31Google Scholar
  28. Simons L, He S, Tittman P, Amenta N (2014) Point-based rendering of forest LiDAR. In: Workshop on visualisation in environmental sciences (EnvirVis), The Eurographics Association, pp 19–23Google Scholar
  29. Slocum TA, McMaster RB, Kessler FC, Howard HH (2009) Thematic cartography and geovisualization, 3rd edn. Prentice Hall series in geographic information science. Prentice Hall, Upper Saddle RiverGoogle Scholar
  30. Ware C (2004) Information visualization: perception for design, 3rd edn. Morgan Kaufmann, BurlingtonGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMADASouthern University of DenmarkOdenseDenmark
  2. 2.Botanic Gardens Conservation InternationalRichmondUK

Personalised recommendations