Advertisement

Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process

  • D. C. Jhariya
  • Tarun KumarEmail author
  • H. K. Pandey
  • Sunil Kumar
  • Dharmendra Kumar
  • Amar Kant Gautam
  • Vindhyavasini Singh Baghel
  • Nawal Kishore
Original Article
  • 81 Downloads

Abstract

Effective management of the groundwater resources became an important factor for the growth of urbanized areas, especially for the sector which has considerable agricultural and industrial activities. Along with quantity, assessment of the groundwater quality also plays an important role in its growth. Tandula watershed is one of the populated areas in the Balod district, Chhattisgarh state, which needs an assessment on the groundwater vulnerable zones for its effective management. The vulnerable zones of the study area have been assessed with the help of DRASTIC, DRASTIC–AHP, and modified DRASTIC–AHP methods. The models have been developed with the help of seven parameters which are depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone, and hydraulic conductivity. The resulted groundwater pollution vulnerability in the study area has classified into five categories such as very low, low, moderate, high, and very high. Cross-comparison and validation of the model with 77 groundwater samples which contain Nitrate concentration were considered and concluded that the modified DRASTIC–AHP model is most accurate and suitable for the present study area. The study also revealed that groundwater in the study area is contaminated by Nitrate pollution due to excessive application of fertilizers in agricultural activities and improper sewage disposal.

Keywords

Groundwater pollution Groundwater vulnerability assessment Modified DRASTIC model Analytic hierarchy process (AHP) Geographic information system (GIS) 

Notes

References

  1. Akhtari M, Akhtari Y (2009) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour Manag.  https://doi.org/10.1007/s11269-008-9319-8 CrossRefGoogle Scholar
  2. Akib S, Shirazi SM, Imran HM, Yusop Z, Harun ZB (2013) Groundwater vulnerability assessment in the Melaka state of Malaysia using DRASTIC and GIS techniques. Environ Earth Sci.  https://doi.org/10.1007/s12665-013-2360-9 CrossRefGoogle Scholar
  3. Al-abadi Alaa M, Aljabbari MH, Al-Shamma’a MH (2014) A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Appl Water Sci.  https://doi.org/10.1007/s13201-014-0221-7 CrossRefGoogle Scholar
  4. Alam F, Umar R, Ahmed S, Dar FA (2014) A new model DRASTIC-LU for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab J Geosci.  https://doi.org/10.1007/s12517-012-0796-y CrossRefGoogle Scholar
  5. Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. US Environmental Protection AgencyGoogle Scholar
  6. Al-rawabdeh AM, Al-ansari NA, Al-taani AA, Al-khateeb FL, Knutsson S (2014) Modeling the risk of groundwater contamination using modified DRASTIC and GIS in Amman-Zerqa. Central Eur J Eng 4(3):264–280.  https://doi.org/10.2478/s13531-013-0163-0 CrossRefGoogle Scholar
  7. Anane M, Abidi B, Lachaal F, Limam A, Jellali S (2013) GIS-based DRASTIC, pesticide DRASTIC, and the susceptibility index SI: a comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrol J.  https://doi.org/10.1007/s10040-013-0952-9 CrossRefGoogle Scholar
  8. Antonakos AK, Panagopoulos GP, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrol J.  https://doi.org/10.1007/s10040-005-0008-x CrossRefGoogle Scholar
  9. Awata I, Chen L, Pathak DR, Hiratsuka A (2009) Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environ Geol.  https://doi.org/10.1007/s00254-008-1432-8 CrossRefGoogle Scholar
  10. Babiker IS, Mohamed AAM, Hiyama T, Kato K (2004) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara heights, Gifu Prefecture, central Japan. Sci Total Environ.  https://doi.org/10.1016/j.scitotenv.2004.11.005 CrossRefGoogle Scholar
  11. Babiker IS, Mohamed AAM, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140.  https://doi.org/10.1016/j.scitotenv.2004.11.005 CrossRefGoogle Scholar
  12. Bartzas G, Tinivella F, Medini L, Zaharaki D, Komnitsa K (2015) Assessment of groundwater contamination risk in an agricultural area in northern Italy. Inf Process Agric 2:109–129Google Scholar
  13. Beynen PE, Van Niedzielski MA, Bialkowska-jelinska E, Alsharif K, Matusick J (2012) Comparative study of special groundwater vulnerability of a karst aquifer in central Florida. Appl Geogr 32(2):868–877.  https://doi.org/10.1016/j.apgeog.2011.09.005 CrossRefGoogle Scholar
  14. Boughriba M, Barkaoui A, Houadi B, Verdoya M (2010) Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using DRASTIC index method in GIS environment. Arab J Geosci.  https://doi.org/10.1007/s12517-009-0072-y CrossRefGoogle Scholar
  15. Dixon B (2005) Groundwater vulnerability mapping: a GIS and fuzzy rule-based integrated tool. Appl Geogr 25:327–347.  https://doi.org/10.1016/j.apgeog.2005.07.002 CrossRefGoogle Scholar
  16. Feola G, Lerner AM, Jain M, Joseph M, Montefrio F, Nicholas KA (2015) Researching farmer behavior in climate change adaptation and sustainable agriculture: lessons learned from five case studies. J Rural Stud 39:74–84CrossRefGoogle Scholar
  17. Guler C, Ali M (2013) Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean coastal zone Mersin, Turkey under con fl citing land use practices. Ocean Coast Manag 71:141–152.  https://doi.org/10.1016/j.ocecoaman.2012.10.010 CrossRefGoogle Scholar
  18. Hamza SM, Ahsan A, Imteaz MA, Rahman A, Mohammad TA, Ghazali AH (2014) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ Earth Sci.  https://doi.org/10.1007/s12665-014-3601-2 CrossRefGoogle Scholar
  19. Hassan A, Hallaq A, Sofyan B, Elaish A (2012) Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza strip—Palestine, using the DRASTIC model within GIS environment. Arab J Geosci.  https://doi.org/10.1007/s12517-011-0284-9 CrossRefGoogle Scholar
  20. Herlinger R, Viero PA (2007) Groundwater vulnerability assessment in the coastal plain of Rio Grande do Sul State, Brazil, using drastic and adsorption capacity of soils. Environ Geol.  https://doi.org/10.1007/s00254-006-0518-4 CrossRefGoogle Scholar
  21. Huan H, Wang J, Teng Y (2012) Science of the total environment assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model : a case study in Jilin City of northeast China. Sci Total Environ 440:14–23.  https://doi.org/10.1016/j.scitotenv.2012.08.037 CrossRefGoogle Scholar
  22. Iqbal J, Gorai AK, Katpatal YB, Pathak G (2014) Development of GIS-based fuzzy pattern recognition model modified DRASTIC model for groundwater vulnerability to pollution assessment. Int J Environ Sci Technol.  https://doi.org/10.1007/s13762-014-0693-x CrossRefGoogle Scholar
  23. Jamrah A, Al-futaisi A, Rajmohan N, Al-yaroubi S (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ Monit Assess.  https://doi.org/10.1007/s10661-007-0104-6 CrossRefGoogle Scholar
  24. Javadi S, Kavehkar N, Mohammadi K (2011a) Calibrating DRASTIC using field measurements, sensitivity analysis and statistical methods to assess groundwater vulnerability, November 2014. Water Int.  https://doi.org/10.1080/02508060.2011.610921 CrossRefGoogle Scholar
  25. Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K (2011b) Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas 13:239–249Google Scholar
  26. Jhariya DC, Shandilya AK, Dewangan R (2012) Nitrate pollution in the groundwater around sagar town, Madhya Pradesh, India. International Conference on chemical, ecology and environmental sciences (ICEES’2012) March 17–18, 2012 BangkokGoogle Scholar
  27. Jilali A (2014) Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and A VI methods. Arab J Geosci.  https://doi.org/10.1007/s12517-014-1320-3 CrossRefGoogle Scholar
  28. Jin S, Ray C (2014) Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control. Sci Total Environ 493:44–53.  https://doi.org/10.1016/j.scitotenv.2014.05.121 CrossRefGoogle Scholar
  29. Li R, Merchant JW (2013) Modeling vulnerability of groundwater to pollution under future scenarios of climate change and biofuels-related land use change: a case study in North Dakota, USA. Sci Total Environ 447:32–45.  https://doi.org/10.1016/j.scitotenv.2013.01.011 CrossRefGoogle Scholar
  30. Li Y, Li J, Chen S, Diao W (2012) Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. Environ Pollut 165:77–90.  https://doi.org/10.1016/j.envpol.2011.12.042 CrossRefGoogle Scholar
  31. Lima ML, Zelaya K (2011) Groundwater vulnerability assessment combining the drastic and dyna-clue model in the Argentine Pampas. Environ Manag.  https://doi.org/10.1007/s00267-011-9652-1 CrossRefGoogle Scholar
  32. Lundstrom C, Kytzia S, Walz A, Adrienne GR, Bebi P (2007) Linking models of land use, resources, and economy to simulate the development of mountain regions ALPSCAPE. Environ Manag.  https://doi.org/10.1007/s00267-005-0342-8 CrossRefGoogle Scholar
  33. Mogaji KA, Lim HS, Abdullah K (2013) Modeling groundwater vulnerability prediction using geographic information system GIS-based ordered weighted average OWA method and DRASTIC model theory hybrid approach. Arab J Geosci.  https://doi.org/10.1007/s12517-013-1163-3 CrossRefGoogle Scholar
  34. Moghaddam A, Fijani A (2010) Groundwater vulnerability assessment using GIS-based DRASTIC model in the Bazargan and Poldasht Plains. J Environ Stud 35(52):35–37Google Scholar
  35. Naqa A (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ Geol.  https://doi.org/10.1007/s00254-004-1126-9 CrossRefGoogle Scholar
  36. Neshat A, Pradhan B (2014a) An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater. Nat Hazards.  https://doi.org/10.1007/s11069-014-1503-y CrossRefGoogle Scholar
  37. Neshat A, Pradhan B (2014b) An integrated gis based statistical model to compute groundwater vulnerability index for decision maker in agricultural area. J Indian Soc Remote Sens 42:777–788.  https://doi.org/10.1007/s12524-014-0376-6 CrossRefGoogle Scholar
  38. Neshat A, Pradhan B (2014c) Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environ Earth Sci.  https://doi.org/10.1007/s12665-013-2690-7 CrossRefGoogle Scholar
  39. Neshat A, Pradhan B, Dadras M (2014) Resources, conservation and recycling groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resour Conserv Recycl 86:74–86.  https://doi.org/10.1016/j.resconrec.2014.02.008 CrossRefGoogle Scholar
  40. Pacheco FAL, Pires LMGR, Santos RMB, Fernandes LFS (2015) Factor weighting in DRASTIC modeling. Sci Total Environ 505:474–486.  https://doi.org/10.1016/j.scitotenv.2014.09.092 CrossRefGoogle Scholar
  41. Posen P, Lovett A, Hiscock K, Evers S, Ward R, Reid B (2006) Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment. Sci Total Environ 367:641–652.  https://doi.org/10.1016/j.scitotenv.2006.02.024 CrossRefGoogle Scholar
  42. Rahman A (2008) A GIS-based DRASTIC model for assessing groundwater vulnerability in the shallow aquifer in Aligarh, India. Appl Geogr 28:32–53.  https://doi.org/10.1016/j.apgeog.2007.07.008 CrossRefGoogle Scholar
  43. Rajasooriyar LD, Boelee E, Prado MCCM, Hiscock KM (2013) Mapping the potential human health implications of groundwater pollution in southern Sri Lanka. Water Resour Rural Dev 1–2:27–42.  https://doi.org/10.1016/j.wrr.2013.10.002 CrossRefGoogle Scholar
  44. Rodriguez-galiano V, Paula M, Garcia-soldado MJ, Chica-olmo M, Ribeiro L (2014) Predictive modeling of groundwater nitrate pollution using Random forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting Southern Spain. Sci Total Environ 476–477:189–206.  https://doi.org/10.1016/j.scitotenv.2014.01.001 CrossRefGoogle Scholar
  45. Saadeh HAM (2009) Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: the Case of the Upper Litani Basin, Lebanon. Water Resour Manag.  https://doi.org/10.1007/s11269-008-9299-8 CrossRefGoogle Scholar
  46. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw-Hill, New YorkGoogle Scholar
  47. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26CrossRefGoogle Scholar
  48. Saaty TL (1995) Decision making for leaders. 1995/1996 edn., completely revised. RWS, PittsburghGoogle Scholar
  49. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145:85–91CrossRefGoogle Scholar
  50. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Google Scholar
  51. Saha D, Alam F (2014) Groundwater vulnerability assessment using DRASTIC and pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ Monit Assess 3:8741–8763.  https://doi.org/10.1007/s10661-014-4041-x CrossRefGoogle Scholar
  52. Saidi S, Bouri S, Ben DH (2010) Groundwater vulnerability and risk mapping of the Hajeb-jelma aquifer Central Tunisia using a GIS-based DRASTIC model, 1579–1588. Environ Earth Sci.  https://doi.org/10.1007/s12665-009-0143-0 CrossRefGoogle Scholar
  53. Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process AHP method: the case of Egirdir Lake basin Isparta, Turkey. Hydrogeol J.  https://doi.org/10.1007/s10040-012-0947-y CrossRefGoogle Scholar
  54. Shekhar S, Pandey AC (2015) A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer. Arab J Geosci.  https://doi.org/10.1007/s12517-014-1285-2 CrossRefGoogle Scholar
  55. Sinan M, Razack M (2009) An extension to the DRASTIC model to assess groundwater vulnerability to pollution : application to the Haouz aquifer of Marrakech Morocco. Environ Geol.  https://doi.org/10.1007/s00254-008-1304-2 CrossRefGoogle Scholar
  56. Stein WE, Mizzi PJ (2007) Decision support. The harmonic consistency index for the analytic hierarchy process. Eur J Oper Res 177:488–497CrossRefGoogle Scholar
  57. Taylor P, Yang YS, Wang L (2014) Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method : a case study. Hydrol Sci J.  https://doi.org/10.1080/02626667.2010.508872 CrossRefGoogle Scholar
  58. Thirumalaivasan SKD (2014) GIS-based assessment of groundwater vulnerability using drastic model. Arab J Geosci.  https://doi.org/10.1007/s13369-013-0843-3 CrossRefGoogle Scholar
  59. Tilahun K, Merkel BJ (2010) Assessment of groundwater vulnerability to pollution in Dire Dawa, Ethiopia using DRASTIC. Environ Earth Sci.  https://doi.org/10.1007/s12665-009-0134-1 CrossRefGoogle Scholar
  60. Vargay Z (2009) Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary ‘ s the main aquifer using DRASTIC and GLEAMS models. J Environ Manag 90:2969–2978.  https://doi.org/10.1016/j.jenvman.2007.08.009 CrossRefGoogle Scholar
  61. Wang J, He J, Chen H (2012) Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Sci Total Environ 432:216–226.  https://doi.org/10.1016/j.scitotenv.2012.06.005 CrossRefGoogle Scholar
  62. Wen X, Wu J, Si J (2009) A GIS-based DRASTIC model for assessing shallow groundwater vulnerability in the Zhangye Basin, northwestern China. Environ Geol.  https://doi.org/10.1007/s00254-008-1421-y CrossRefGoogle Scholar
  63. Worrall F, Besien T, Kolpin DW (2002) Groundwater vulnerability: interactions of chemical and site properties. Sci Total Environ 299:131–143CrossRefGoogle Scholar
  64. Wu W, Yin S, Liu H, Chen H (2014) Groundwater vulnerability assessment and feasibility mapping under reclaimed water irrigation by a modified DRASTIC model. Water Resour Manag 21:1219–1234.  https://doi.org/10.1007/s11269-014-0536-z CrossRefGoogle Scholar
  65. Yin L, Zhang E, Wang X (2013) A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ Earth Sci.  https://doi.org/10.1007/s12665-012-1945-z CrossRefGoogle Scholar
  66. You-hailin XL, Ye-chang XJ (2011) Evaluation of groundwater vulnerability with improved DRASTIC method. 3rd international conference on Environmental Science and Information Technology (ESIAT 2011), 2690–2695.  https://doi.org/10.1016/j.proenv.2011.09.418 CrossRefGoogle Scholar
  67. Zhao YY, Pei YS (2012) Risk evaluation of groundwater pollution by pesticides in China : a short review. Proc Environ 13:1739–1747.  https://doi.org/10.1016/j.proenv.2012.01.167 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • D. C. Jhariya
    • 1
  • Tarun Kumar
    • 2
    Email author
  • H. K. Pandey
    • 3
  • Sunil Kumar
    • 4
  • Dharmendra Kumar
    • 5
  • Amar Kant Gautam
    • 2
  • Vindhyavasini Singh Baghel
    • 6
  • Nawal Kishore
    • 7
  1. 1.Department of Applied GeologyNational Institute of TechnologyRaipurIndia
  2. 2.Dr. Rajendra Prasad Central Agricultural UniversitySamastipurIndia
  3. 3.Department of Civil EngineeringMotilal Nehru National Institute of TechnologyAllahabadIndia
  4. 4.Rajiv Gandhi National Groundwater Training and Research Institute (RGI), CGWBRaipurIndia
  5. 5.Govind Ballabh Pant University of Agriculture and TechnologyPantnagarIndia
  6. 6.Geological Survey of India, Central Region RaipurRaipurIndia
  7. 7.Department of Mining EngineeringIndian Institute of Technology (BHU)VaranasiIndia

Personalised recommendations