Floodplain chronology and sedimentation rates for the past 200 years derived from trace element gradients, organic compounds, and numerical modeling

  • Michael Buchty-LemkeEmail author
  • Lukas Hagemann
  • Anna-Lisa Maaß
  • Holger Schüttrumpf
  • Jan Schwarzbauer
  • Frank Lehmkuhl
Original Article


This study evaluates the applicability of trace element and organic contaminant data from a floodplain cross-section as the basis for a numerical model of spatial floodplain dynamics. Using threshold values of pollution-sensitive trace elements and market introduction dates of organic xenobiotics, the sampled sediment is assigned to historical phases to develop a sediment chronology. The investigation is based on a 60-m wide core transect from which sediment samples were analyzed to determine grain-size distribution, trace element inventory, and organic xenobiotic content. In addition, floodplain inundation, flow velocities, and the amount of sediment deposited were numerically modeled using Delft3D to verify the analyses results; conversely, the results of the sedimentary analysis served the input data for the model. Changes in floodplain morphology were interpreted on the basis of a digital elevation model (1 m resolution), historical maps from 1865 AD, and field surveys. The architecture of the alluvial sediments was examined in the cores accounting recent floodplain relief and possible historical factors. The results show a broad range of heavy metal pollutants and the presence of 57 volatile organic compounds in a pattern that reflects multiple deposition processes and phases. Based on these results and the model verification, the sediments were assigned to pre-industrial, industrial, and post-industrial phases, and sedimentation rates of 0.6–1.3 cm a−1 were estimated. The results of this study contribute to a better understanding of the development of small meandering gravel-bed rivers with large floodplains, where suspended sediments predominate.


Fluvial morphodynamics Floodplain deposits Heavy metals Interdisciplinary approach Organic pollutants Pollution history 



Roy Frings is kindly acknowledged for his effort and advice in the development of the research project on which this publication is based. The authors thank Wolfgang Römer, Verena Esser, and two anonymous reviewers for valuable comments that strongly improved the manuscript. The cross-sectional profiles were kindly provided by Bezirksregierung Köln, Dezernat 54, Wasserwirtschaft.


This work was supported by Deutsche Forschungsgemeinschaft (Grant numbers LE730/33-1, SCHW750/18-1, and FR3509/3-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

12665_2019_8428_MOESM1_ESM.pdf (4 mb)
Supplementary material 1 (PDF 4079 kb)
12665_2019_8428_MOESM2_ESM.pdf (8.9 mb)
Supplementary material 2 (PDF 9133 kb)
12665_2019_8428_MOESM3_ESM.xlsx (124 kb)
Supplementary material 3 (XLSX 124 kb)
12665_2019_8428_MOESM4_ESM.pdf (387 kb)
Supplementary material 4 (PDF 386 kb)


  1. ABANDA (2013) Abfallanalysedatenbank ABANDA. Recklinghausen: Landesamt für Umwelt und Verbraucherschutz Nordrhein-Westfalen. Accessed 26 Jan 2013
  2. Adánez Sanjuán P, Llamas Borrajo JF, Locutura Rupérez J, García Cortés A (2014) A geochemical study of overbank sediments in an urban area (Madrid, Spain). Environ Geochem Health 36:1129–1150. CrossRefGoogle Scholar
  3. Bábek O, Faměra M, Hilscherová K et al (2011) Geochemical traces of flood layers in the fluvial sedimentary archive; implications for contamination history analyses. Catena 87:281–290. CrossRefGoogle Scholar
  4. Bell FG, Stacey TR, Genske DD (2000) Mining subsidence and its effect on the environment: some differing examples. Environ Geol 40:135–152. CrossRefGoogle Scholar
  5. Berger M, Löffler D, Ternes T et al (2016) The effect of distribution processes on the isomeric composition of hexachlorocyclohexane in a contaminated riverine system. Int J Environ Sci Technol 13:995–1008. CrossRefGoogle Scholar
  6. Bezirksregierung Köln (2017) Historische Karten NRW. Accessed 1 Apr 2017
  7. Birch GF, Robertson E, Taylor SE, McConchie DM (2000) The use of sediments to detect human impact on the fluvial system. Environ Geol 39:1015–1028. CrossRefGoogle Scholar
  8. Bruckner C (1967) Zur Wirtschaftsgeschichte des Regierungsbezirks Aachen. Rheinisch-Westfälisches Witschaftsarchiv zu Köln, KölnGoogle Scholar
  9. Buchty-Lemke M (2018) Untersuchungen zu anthropogenen Einflüssen auf die fluviale Morphodynamik und die Verteilung erhöhter Spurenelementgehalte in kleinen Flusseinzugsgebieten—Das Beispiel der Wurm, Flussgebietseinheit Maas. Dissertation, RWTH Aac University, AachenGoogle Scholar
  10. Buchty-Lemke M, Lehmkuhl F (2018) Impact of abandoned water mills on Central European foothills to lowland rivers: a reach scale example from the Wurm River, Germany. Geogr Ann Ser Phys Geogr 0:1–19. CrossRefGoogle Scholar
  11. Callender E (2014) 11.3—heavy metals in the environment—historical trends. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 59–89CrossRefGoogle Scholar
  12. Ciszewski D, Grygar TM (2016) A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollut 227:239. CrossRefGoogle Scholar
  13. Curdes G (1999) Die Entwicklung des Aachener Stadtraumes—Der Einfluss von Leitbildern und Innovationen auf die Form der Stadt. Dortmunder Vertrieb für Bau- und Planungsliteratur, DortmundGoogle Scholar
  14. Dahmen DJ (1925) Das Aachener Tuchgewerbe bis zum Ende des 19. Jahrhunderts—Ein Beitrag zur Wirtschaftsgeschichte der Stadt Aachen. Aachen: Aachener Verlags und Druckerei-GesellschaftGoogle Scholar
  15. Deltares (2016) Delft Flow: simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments. User Manual, 3D/2D modelling suite for integral water solutions. Accessed 12 July 2019
  16. de Miguel E, Llamas JF, Chacón E et al (1997) Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ 31:2733–2740. CrossRefGoogle Scholar
  17. De Vos W, Ebbing J, Hindel R, Schalich J, Swennen R, Van Keer I (1996) Geochemical mapping based on overbank sediments in the heavily industrialised border area of Belgium, Germany and the Netherlands. J Geochem Explor 56:91–104. CrossRefGoogle Scholar
  18. Demetriades A, Pirc S, De Vos WD et al (2006) Distribution of elements in floodplain sediment. In: De Vos W, Travainen T, Reeder S (eds) Geochemical atlas of Europe. Part. Geological survey of Finland, Espoo, pp 41–44Google Scholar
  19. Dhivert E, Grosbois C, Rodrigues S, Desmet M (2015) Influence of fluvial environments on sediment archiving processes and temporal pollutant dynamics (Upper Loire River, France). Sci Total Environ 505:121–136. CrossRefGoogle Scholar
  20. Dobler L (2000) Schwermetalltiefengradienten in Auensedimenten der Selke als Ausdruck der historischen Montanwirtschaft im Ostharz. In: Wippermann T (ed) Bergbau und Umwelt: langfristige geochemische Einflüsse; 39 Tabellen. Springer, Berlin, pp 67–85CrossRefGoogle Scholar
  21. Eganhouse RP (1986) Long-chain alkylbenzenes: their analytical chemistry, environmental occurrence and fate. Int J Environ Anal Chem 26:241–263. CrossRefGoogle Scholar
  22. Elznicová J, Grygar TM, Popelka J, Sikora M, Novák P, Hošek M (2019) Threat of pollution hotspots reworking in river systems: case study of the Ploučnice River (Czech Republic). ISPRS Int J Geo-Inf 1:2. CrossRefGoogle Scholar
  23. Eschweiler O, van Eyll K (eds) (2000) Wirtschaftsgeschichte der Region Aachen: vom Ende des Zweiten Weltkriegs bis zur Gegenwart. Rheinisch-Westfälisches Wirtschaftsarchiv zu Köln, KölnGoogle Scholar
  24. Famera M, Babek O, Matys Grygar T, Novakova T (2013) Distribution of heavy-metal contamination in regulated river-channel deposits: a magnetic susceptibility and grain-size approach; River morava, Czech republic. Water Air Soil Pollut. CrossRefGoogle Scholar
  25. Falandysz J (1998) Polychlorinated naphthalenes: an environmental update. Environ Pollut 101:77–90. CrossRefGoogle Scholar
  26. Fikarová J, Kenecká S, Elznicová J, Faměra M, Lelková T, Matkovič J, Matys Grygar T (2018) Spatial distribution of organic pollutants (PAHs andpolar pesticides) in the floodplain of the Ohře (Eger) River, Czech Republic. J Soils Sediments 18:259–275. CrossRefGoogle Scholar
  27. Fischer R (2000) Entwicklung der Gewässergüte in der Wurm. In: Landesumweltamt NRW (Hrsg) Gewässergütebericht 2000—30 Jahre Biologische Gewässerüberwachung in Nordrhein-Westfalen. Essen: Landesumweltamt NRW, pp 215–224Google Scholar
  28. Förstner U (2004) Sediment dynamics and pollutant mobility in rivers: an interdisciplinary approach. Lakes Reserv Res Manag 9:25–40. CrossRefGoogle Scholar
  29. Frings RM, Ottevanger W, Sloff K (2011) Downstream fining processes in sandy lowland rivers. J Hydraul Res 49:178–193. CrossRefGoogle Scholar
  30. Frings RM, Gehres N, Promny M et al (2014) Today’s sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif. Geomorphology 204:573–587. CrossRefGoogle Scholar
  31. Germershausen L (2013) Auswirkungen der Landnutzung auf den Schwermetall- und Nährstoffhaushalt in der Innersteaue zwischen Langelsheim und Ruthe. Inst. für Geographie, HildesheimGoogle Scholar
  32. Gevao B, Harner T, Jones KC (2000) Sedimentary record of polychlorinated naphthalene concentrations and deposition fluxes in a dated lake core. Environ Sci Technol 34:33–38. CrossRefGoogle Scholar
  33. Gocht T, Moldenhauer K-M, Püttmann W (2001) Historical record of polycyclic aromatic hydrocarbons (PAH) and heavy metals in floodplain sediments from the Rhine River (Hessisches Ried, Germany). Appl Geochem 16:1707–1721. CrossRefGoogle Scholar
  34. Grigoriadou A, Schwarzbauer J (2011) Non-target screening of organic contaminants in sediments from the industrial coastal area of Kavala City (NE Greece). Water Air Soil Pollut 214:623–643. CrossRefGoogle Scholar
  35. Grygar TM, Sedláček J, Bábek O et al (2012) Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Pollut 223:739–753. CrossRefGoogle Scholar
  36. Grygar TM, Elznicová J, Tůmová Š, Faměra M, Balogh M, Kiss T (2016) Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography. Geomorphology 254:41–56. CrossRefGoogle Scholar
  37. Hagemann L, Buchty-Lemke M, Lehmkuhl F, Alzer J, Kümmerle EA, Schwarzbauer J (2018) Exhaustive screening of long-term pollutants in riverbank sediments of the Wurm River, Germany. Water Air Soil Pollut 229:197. CrossRefGoogle Scholar
  38. Hasse S (2000) Giesserei Lexikon. Fachverlag Schiele & Schön, BerlinGoogle Scholar
  39. Havlik D (2001) Das Wetter in Aachen im 20. Jahrhundert—Eine Bilanz. In: Informationen und Materialien zur Geographie der Euregio Maas-Rhein. Aachen, pp 62–73Google Scholar
  40. Heim S, Schwarzbauer J, Kronimus A et al (2004) Geochronology of anthropogenic pollutants in riparian wetland sediments of the Lippe River (Germany). Org Geochem 35:1409–1425. CrossRefGoogle Scholar
  41. Heim S, Ricking M, Schwarzbauer J, Littke R (2005) Halogenated compounds in a dated sediment core of the Teltowcanal, Berlin: time related sediment contamination. Chemosphere 61:1427–1438. CrossRefGoogle Scholar
  42. Heim S, Hucke A, Schwarzbauer J, Littke R, Mangini A (2006) Geochronology of anthropogenic contaminants in adated sediment core of the Rhine River (Germany): emission sources and risk assessment. Acta Hydrochim Hydrobiol 34:34–52. CrossRefGoogle Scholar
  43. Heitfeld M, Mainz M, Schetelig K (2005) Post mining hazard assessment in North Rhine-Westphalia (Germany) at the example of the Aachen hard coal mining district. Post-Mining 2005, 16–17. Nancy, France. Accessed 12 July 2019
  44. Hillenbrand T, Toussaint D, Böhm E, et al (2005) Einträge von Kupfer, Zink und Blei in Gewässer und Böden. Analyse der Emissionspfade und möglicher Emissionsminderungsmaßnahmen; Forschungsbericht 20224220/02 UBA-FB 000824Google Scholar
  45. Hindel R, Schalich J, De Vos W et al (1996) Vertical distribution of elements in overbank sediment profiles from Belgium, Germany and The Netherlands. J Geochem Explor 56:105–122. CrossRefGoogle Scholar
  46. Hoffmann T, Thorndycraft VR, Brown AG et al (2010) Human impact on fluvial regimes and sediment flux during the Holocene: review and future research agenda. Glob Planet Change 72:87–98. CrossRefGoogle Scholar
  47. Hoppmann A (2006) Integrierte Gewässerbewirtschaftung im Einzugsgebiet der Rur. In: Reineke T, Lehmkuhl F, Blümel H (eds) Grenzüberschreitendes integratives Gewässermanagement. Academia Verlag, Sankt Augustin, p 254Google Scholar
  48. Hudson-Edwards KA, Macklin MG, Curtis CD, Vaughan DJ (1998) Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surf Process Landf 23:671–684.;2-R CrossRefGoogle Scholar
  49. Hürkamp K, Raab T, Völkel J (2009a) Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology 110:28–36. CrossRefGoogle Scholar
  50. Hürkamp K, Raab T, Völkel J (2009b) Lead pollution of floodplain soils in a historic mining area—age, distribution and binding forms. Water Air Soil Pollut 201:331–345. CrossRefGoogle Scholar
  51. James CS (1985) Sediment transfer to overbank sections. J Hydraul Res 23:435–452. CrossRefGoogle Scholar
  52. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca RatonGoogle Scholar
  53. Käding M (2005) Rot(h)e Erden. In: Thomes P (ed) Rohstoffbasis und Ab-satzmarkt. Die Schwerindustrie des Großherzogtums Luxemburg und das Aachener Revier. Aachener Studien zur Wirtschafts- und Sozialgeschichte, Bd. 2. Aachen: Shaker Verlag. S. 13–20Google Scholar
  54. Kleinhans MG, de Vries B, Braat L, van Oorschot M (2018) Living landscapes: muddy and vegetated floodplain effects on fluvial pattern in an incised river. Earth Surf Proc Land 43:2948–2963. CrossRefGoogle Scholar
  55. Land NRW (ed) (2017) Datenlizenz Deutschland -Digitales Geländemodell Gitterweite 1 m—dl-de/by-2-0 ( Accessed 1 Apr 2017
  56. Leenaers H (1989) The dispersal of metal mining wastes in the catchment of the river Geul (Belgium—The Netherlands). Nederlandse Geografische Studies. Accessed 2 May 2018
  57. Legret M, Pagotto C (1999) Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ 235:143–150. CrossRefGoogle Scholar
  58. Maaß A-L, Schüttrumpf H (2018) Long-term effects of mining-induced subsidence on the trapping efficiency of floodplains. Anthropocene 24:1–13. CrossRefGoogle Scholar
  59. Maaß A-L, Schüttrumpf H (2019) Elevated floodplains and net channel incision as a result of the construction and removal of water mills. Geografiska Annaler Ser A Phys Geogr 101:157–176. CrossRefGoogle Scholar
  60. Maaß A-L, Esser V, Frings RM, Lehmkuhl F, Schüttrumpf H (2018) A decade of fluvial morphodynamics: relocation and restoration of the Inde River (North-Rhine Westphalia, Germany). Environ Sci Eur 30:40. CrossRefGoogle Scholar
  61. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. CrossRefGoogle Scholar
  62. Malmon DV, Dunne T, Reneau SL (2002) Predicting the fate of sediment and pollutants in River Floodplains. Environ Sci Technol 36:2026–2032. CrossRefGoogle Scholar
  63. Malz F (1972) Über die Behandlung von Abwässern des Steinkohlenbergbaus. Pure Appl Chem 29:333–344. CrossRefGoogle Scholar
  64. Martin CW (2015) Trace metal storage in recent floodplain sediments along the Dill River, central Germany. Geomorphology 235:52–62. CrossRefGoogle Scholar
  65. Meyer (1908) Meyer’s Großes Konversations-Lexikon, Band 12. Leipzig, Wien: Bibliographisches Institut.>abger. Accessed 2 Apr 2019
  66. Meyer L-H (1991) Kupfer- und Messingindustrie. In: Fehl G, Kaspari-Küffen D, Meyer L-H (eds) Mit Wasser und Dampf…: Zeitzeugen der frühen Industrialisierung im belgisch-deutschen Grenzraum. Meyer & Meyer, Aachen, pp 178–179Google Scholar
  67. Middelkoop H (2000) Heavy-metal pollution of the river Rhine and Meuse floodplains in the Netherlands. Neth J Geosci 79:411–427. CrossRefGoogle Scholar
  68. Middelkoop H (2002) Reconstructing floodplain sedimentation rates from heavy metal profiles by inverse modeling. Hydrol Process 16:47–64. CrossRefGoogle Scholar
  69. Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen (MKULNV NRW) (2009) Steckbrief der Planungseinheiten in den nordrhein-westfälischen Anteilen von Rhein, Weser, Ems und Maas. DüsseldorfGoogle Scholar
  70. Monaci F, Bargagli R (1997) Barium and other trace metals as indicators of vehicle emissions. Water Air Soil Pollut 100:89–98. CrossRefGoogle Scholar
  71. Mumbo J, Pandelova M, Mertes F et al (2016) The fingerprints of dioxin-like bromocarbazoles and chlorocarbazoles in selected forest soils in Germany. Chemosphere 162:64–72. CrossRefGoogle Scholar
  72. Nagel DE, Buffington JM, Parkes SL, Wenger S, Goode JR (2014) A landscape scale valley confinement algorithm: delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications (no. RMRS-GTR-321). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ft. Collins, CO.
  73. Nicholas AP, Walling DE (1997) Investigating spatial patterns of medium-term overbank sedimentation on floodplains: a combined numerical modeling and radiocaesium-based approach. Geomorphology 19:133–150. CrossRefGoogle Scholar
  74. Nicholas AP, Walling DE (1998) Numerical modeling of floodplain hydraulics and suspended sediment transport and deposition. Hydrol Process 12:1339–1355.;2-6 CrossRefGoogle Scholar
  75. Nichols G (2009) Sedimentology and stratigraphy, 2nd edn. Wiley-Blackwell, ChichesterGoogle Scholar
  76. Nicholson FA, Smith SR, Alloway BJ et al (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219. CrossRefGoogle Scholar
  77. Nilson E (2006) Räumlich-strukturelle und zeitlich-dynamische Aspekte des Landnutzungswandels im Dreiländereck Belgien-Niederlande-Deutschland: eine Analyse mittels eines multitemporalen, multifaktoriellen und grenzübergreifenden Geographischen Informationssystems. Dissertation, RWTH Aachen UniversityGoogle Scholar
  78. Nordrhein-Westfalen L (2005) Gewässerstrukturgüte in Nordrhein-Westfalen—Bericht 2005. Ministerium für Umwelt, Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen, EssenGoogle Scholar
  79. Notebaert B, Piégay H (2013) Multi-scale factors controlling the pattern of floodplain width at a network scale: the case of the Rhône basin, France. In: Geomorphology, the field tradition in geomorphology 43rd annual Binghamton geomorphology symposium, held 21–23 September 2012 in Jackson, Wyoming USA 200, pp 155–171. CrossRefGoogle Scholar
  80. Novakova T, Matys Grygar T, Babek O, Famera M, Mihaljevic M, Strnad L (2013) Human impact on fluvial sediments: how to distinguish regional and local sources of heavy metals contamination. Presented at the E3S Web of Conferences. CrossRefGoogle Scholar
  81. Owens PN, Batalla RJ, Collins AJ et al (2005) Fine-grained sediment in river systems: environmental significance and management issues. River Res Appl 21:693–717. CrossRefGoogle Scholar
  82. Paul J (1994) Grenzen der Belastbarkeit—Die Flüsse Rur (Roer) und Inde im Industriezeitalter. Verlag der Joseph-Kuhl-Gesellschaft, JülichGoogle Scholar
  83. Perry C, Taylor K (2009) Environmental sedimentology: introduction. In: Perry C, Taylor K (eds) Environmental sedimentology. Blackwell, Malden, Oxford, Victoria, pp 1–31Google Scholar
  84. Phillips JM, Russell MA, Walling DE (2000) Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrol Process 14:2589–2602.;2-D CrossRefGoogle Scholar
  85. Pizzuto JE (1987) Sediment diffusion during overbank flows. Sedimentology 34:301–317. CrossRefGoogle Scholar
  86. Pu JH (2016) Conceptual hydrodynamic-thermal mapping modeling for coral reefs at south Singapore sea. Appl Ocean Res 55:59–65. CrossRefGoogle Scholar
  87. Pu JH, Lim SY (2014) Efficient numerical computation and experimental study of temporally long equilibrium scour development around abutment. Environ Fluid Mech 14:69–86. CrossRefGoogle Scholar
  88. Rahbani M (2015) A comparison between the suspended sediment concentrations derived from DELFT3D model and collected using transmissometer—a case study in tidally dominated area of Dithmarschen Bight. Oceanologia 57:44–49. CrossRefGoogle Scholar
  89. Reischl A, Joneck M, Dumler-Gradl R (2005) Chlorcarbazole in Böden. Umweltwissenschaften Schadst-Forsch 17:197. CrossRefGoogle Scholar
  90. Rinaldi M, Mengoni B, Luppi L, Darby SE, Mosselman E (2008) Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resour Res. CrossRefGoogle Scholar
  91. Salminen R, Batista MJ, Bidovec M et al (2005) Geochemical Atlas of Europe, part 1, background information, methodology and maps. Geological Survey of FinlandGoogle Scholar
  92. Schmidt-Wygasch CM (2011) Neue Untersuchungen zu holozänen Genese des Unterlaufs der Inde-Chronostratigraphische Differenzierung der Auenlehme unter besonderer Berücksichtigung der Montangeschichte der Voreifel. Dissertation, RWTH AachenGoogle Scholar
  93. Schulte P, Lehmkuhl F, Steininger F et al (2016) Influence of HCl pretreatment and organo-mineral complexes on laser diffraction measurement of loess–paleosol-sequences. CATENA 137:392–405. CrossRefGoogle Scholar
  94. Schulze T, Ricking M (2005) Entwicklung einer Verfahrensrichtlinie “Sedimente und Schwebstoffe”. Freie Universität Berlin, BerlinGoogle Scholar
  95. Schwarzbauer J, Littke R, Weigelt V (2000) Identification of specific organic contaminants for estimating the contribution of the Elbe river to the pollution of the German Bight. Org Geochem 31:1713–1731. CrossRefGoogle Scholar
  96. Shiu WY, Mackay D (1986) A critical review of aqueous solubilities, vapor pressures, Henry’s law constants, and octanol-water partition coefficients of the polychlorinated biphenyls. J Phys Chem Ref Data 15:911–929. CrossRefGoogle Scholar
  97. Stam MH (2002) Effects of land-use and precipitation changes on floodplain sedimentation in the nineteenth and twentieth centuries (Geul River, The Netherlands). In: Peterrtini I, Baker VR, Garzón G (eds) Flood and megaflood processes and deposits. Blackwell Publishing Ltd., Hoboken, pp 251–267CrossRefGoogle Scholar
  98. Stelzer FH (2000) Die Steinkohlenaufbereitung und–verarbeitung auf den Zechen im Aachener Revier von den Anfängen bis zu den Zechenstillegungen im historischen Kontext. In: Martens PN (Hrsg) Aachener Beiträge zur Rohstofftechnik und –wirtschaft Band 29. Verlag Mainz, AachenGoogle Scholar
  99. Stock F, Knipping M, Pint A et al (2016) Human impact on Holocene sediment dynamics in the Eastern Mediterranean—the example of the Roman harbour of Ephesus: multi-proxy analyses of sediments of the Roman harbour of Ephesus. Earth Surf Process Landf 41:980–996. CrossRefGoogle Scholar
  100. Straatsma MW, Kleinhans MG (2018) Flood hazard reduction from automatically applied landscaping measures in RiverScape, a Python package coupled to a two-dimensional flow model. Environ Model Softw 101:102–116. CrossRefGoogle Scholar
  101. Swennen R, Van der Sluys J (2002) Anthropogenic impact on sediment composition and geochemistry in vertical overbank profiles of river alluvium from Belgium and Luxembourg. J Geochem Explor 75:93–105. CrossRefGoogle Scholar
  102. Swennen R, Keer IV, Vos WD (1994) Heavy metal contamination in overbank sediments of the Geul river (East Belgium): its relation to former Pb–Zn mining activities. Environ Geol 24:12–21. CrossRefGoogle Scholar
  103. Törnqvist TE, Bridge JS (2002) Spatial variation of overbank aggradation rate and its influence on avulsion frequency. Sedimentology 49:891–905. CrossRefGoogle Scholar
  104. Umweltbundesamt (2001) Abtrag von Kupfer und Zink von Dächern, Dachrinnen und Fallrohren durch Niederschläge. Accessed 13 May 2016
  105. Vogt H (1998) Niederrheinischer Wassermühlenführer. KrefeldGoogle Scholar
  106. von Coels L (1991) Zum gewerblich-industriellen Zustand von Aachen im Jahre 1836. In: Fehl G, Kaspari-Küffen D, Meyer L-H (eds) Mit Wasser und Dampf…: Zeitzeugen der frühen Industrialisierung im belgisch-deutschen Grenzraum. Meyer & Meyer, Aachen, p 163Google Scholar
  107. Walling D, Owens P, Carter J et al (2003) Storage of sediment-associated nutrients and contaminants in river channel and floodplain systems. Appl Geochem 18:195–220. CrossRefGoogle Scholar
  108. Warmink JJ, Van der Klis H, Booij MJ, Hulscher SJMH (2011) Identification and quantification of uncertainties in a hydrodynamic river model using expert opinions. Water Resour Manag 25:601–622. CrossRefGoogle Scholar
  109. Weber U (1991) Einfluss der Urbanisierung auf den Wasserhaushalt im Raum Aachen. Geographisches Institut der RWTH Aachen im Selbstverlag, AachenGoogle Scholar
  110. Wessels M, Lenhard A, Giovanoli F, Bollhöfer A (1995) High resolution time series of lead and zinc in sediments of Lake Constance. Aquat Sci Res Boundaries 57:291–304. CrossRefGoogle Scholar
  111. Witter B, Winkler M, Friese K (2004) Depth distribution of chlorinated and polycyclic aromatic hydrocarbons in floodplain soils of the River Elbe. Acta Hydrochim Hydrobiol 31:411–422CrossRefGoogle Scholar
  112. Wrede V, Zeller M (1988) Geologie der Aachener Steinkohlelagerstätten. KrefeldGoogle Scholar
  113. Zeng EY, Yu CC (1996) Measurements of linear alkylbenzenes by GC/MS with interference from tetrapropylene-based alkylbenzenes: calculation of quantitation errors using a two-component model. Environ Sci Technol 30:322–328. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeographyRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Geology and Geochemistry of Petroleum and CoalRWTH Aachen UniversityAachenGermany
  3. 3.Institute of Hydraulic Engineering and Water Resources ManagementRWTH Aachen UniversityAachenGermany

Personalised recommendations