Advertisement

Application of fuzzy inference system to predict uniaxial compressive strength and elastic modulus of migmatites

  • Bahman Saedi
  • Seyed Davoud MohammadiEmail author
  • Hossein Shahbazi
Original Article
  • 49 Downloads

Abstract

Soft computing methods are increasingly being used as substitutes for traditional statistical analysis tools to predict uniaxial compressive strength (UCS) and elastic modulus (E). In this paper, multiple regression (MR) analysis and fuzzy inference system (FIS) were used to estimate UCS and E of migmatites in the Sanandaj–Sirjan zone in Iran. A series of rock index properties including porosity (n), cylinderical punch index (CPI), block punch index (BPI), Brazilian tensile strength (BTS), point load index (IS(50)), and P-wave velocity (VP) were measured and employed to develop six prediction models. Amongst the rock indices, IS(50) and Vp had the best correlations with UCS and E, respectively. Performance evaluation indicated that FIS is a more reliable tool for predicting UCS and E of migmatites, due to its ability in managing uncertainties in the test results with clarity and precision. The results indicated that FIS model 2 which employs n, CPI, BTS, and VP as input variables and FIS model 3 which employs n, CPI, IS(50), and VP, performed better than other models in predicting UCS, while, FIS model 2 also produced the best results for predicting E. The results of performance evaluation demonstrate that the developed models are highly efficient for prediction and the input parameters have notable influence on UCS and E.

Keywords

Migmatite Sanandaj–Sirjan zone Uniaxial compressive strength Elastic modulus Multiple regression Fuzzy inference system 

Notes

Supplementary material

12665_2019_8219_MOESM1_ESM.xlsx (30 kb)
Supplementary material 1 (XLSX 29 KB)

References

  1. Ahmadi Khalaji A, Valizade MV, Esmaeili D (2008) Petrology and geochemistry of the granitoid Massif of Boroujerd. J Sci Univ Tehran 33:1–14Google Scholar
  2. ASTM (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. Designation D4543Google Scholar
  3. Babakhani AR, Ghalamghash J (1990) Geological map of Iran, 1:100000 series, sheet 5463. Geological Survey of IranGoogle Scholar
  4. Baharifar A, Moinevaziri H, Bellon H, Pique A (2004) The crystalline complexes of Hamedan (Sanandaj Sirjan zone, western Iran): metasedimentary mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events, 40K–40Ar dating. Comptes Rendus Geosci 366:1143–1152Google Scholar
  5. Basarir H, Karpuz C, Tutluoglu L (2007) A fuzzy logic based rippability classification system. J S Afr Inst Min Metall 107:817–831Google Scholar
  6. Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39:483–490.  https://doi.org/10.1007/s00603-006-0082-y CrossRefGoogle Scholar
  7. Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47:823–828.  https://doi.org/10.1016/j.ijrmms.2010.04.006 CrossRefGoogle Scholar
  8. Beiki M, Majdi A, Givshad AD (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int J Rock Mech Min Sci 63:159–169.  https://doi.org/10.1016/j.ijrmms.2013.08.004 CrossRefGoogle Scholar
  9. Deb D, Choi S (2006) Analysis of sinkhole occurrences over abandoned mines using fuzzy reasoning: a case study. Geotechn Geol Eng 24:1243–1258.  https://doi.org/10.1007/s10706-005-1404-7 CrossRefGoogle Scholar
  10. Deere DU, Miller RP (1966) Engineering classification and index properties for intact rocks. Technical Report. Air Force Weapons Lab, New Mexico. AFNL-TR. 65-116Google Scholar
  11. Dehghan S, Sattari GH, Chehreh CS, Aliabadi MA (2010) Prediction of unconfined compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min Sci Technol 20:41–46.  https://doi.org/10.1016/S1674-5264(09)60158-7 CrossRefGoogle Scholar
  12. Eghlimi B (1998) Geological map of Iran, 1:100000 series, sheet 5759. Geological Survey of IranGoogle Scholar
  13. Fazlnia A, Schenk V, Straaten F, Mirmohammadi M (2009) Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran. Lithos 112:413–433CrossRefGoogle Scholar
  14. Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng Geol 66:39–51.  https://doi.org/10.1016/S0013-7952(02)00023-6 CrossRefGoogle Scholar
  15. Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72.  https://doi.org/10.1016/j.engappai.2003.11.006 CrossRefGoogle Scholar
  16. Grasso P, Xu S, Mahtab A (1992) Problems and promises of index testing of rock. In: The 33th U.S. symposium on rock mechanics (USRMS), 3–5 June, Santa Fe, New Mexico, Balkema, Rotterdam, pp 879–888Google Scholar
  17. Green RE (1991) Introduction to ultrasonic testing. In: Ultrasonic testing, American Society for Nondestructive Testing. Academic, Metals ParkGoogle Scholar
  18. Grima MA (2000) Neuro-fuzzy modelling in engineering geology. Balkema, RotterdamGoogle Scholar
  19. Grima AM, Babuska R (1999) Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int J Rock Mech Min Sci 36:339–349.  https://doi.org/10.1016/S0148-9062(99)00007-8 CrossRefGoogle Scholar
  20. Grima MA, Verhoef PNW (1999) Forecasting rock trencher performance using fuzzy logic. Int J Rock Mech Min Sci 36:413–432.  https://doi.org/10.1016/S0148-9062(99)00025-X CrossRefGoogle Scholar
  21. Gupta AS, Rao KS (1998) Index properties of weathered rocks: inter-relationships and applicability. Bull Eng Geol Environ 57:161–172.  https://doi.org/10.1007/s100640050032 CrossRefGoogle Scholar
  22. Hajialioghli R, Moazzen M, Jahangiri A, Oberhansli R, Mocek B, Altenberger U (2011) Petrogenesis and tectonic evolution of metaluminous sub-alkaline granitoids from the Takab Complex, NW Iran. Geol Mag 148:250–268CrossRefGoogle Scholar
  23. Heidari M, Khanlari GR, Kaveh MT, Kargarian S (2012) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45:265–273.  https://doi.org/10.1007/s00603-011-0196-8 CrossRefGoogle Scholar
  24. Heidari M, Mohseni H, Jalali SH (2018) Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models. Geotech Geol Eng 36:401–412.  https://doi.org/10.1007/s10706-017-0334-5 CrossRefGoogle Scholar
  25. Iphar M, Goktan RM (2006) An application of fuzzy sets to the diggability index rating method for surface mine equipment selection. Int J Rock Mech Min Sci 43:253–266.  https://doi.org/10.1016/j.ijrmms.2005.07.003 CrossRefGoogle Scholar
  26. ISRM (1978a) suggested methods for determining sound velocity. Int J Rock Mech Min Sci Geomech Abstr 15:53–58Google Scholar
  27. ISRM (1978b) suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15:99–103CrossRefGoogle Scholar
  28. ISRM (1979a) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16:135–140Google Scholar
  29. ISRM (1979b) Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci 16:141–156Google Scholar
  30. ISRM (1985) Suggested methods for determining pint load strength. Int J Rock Mech Min Sci Geomech Abstr 22:51–60CrossRefGoogle Scholar
  31. Jabbar MA (2011) Correlations of point load index and pulse velocity with the uniaxial compressive strength for rocks. J Eng 14:992–1006Google Scholar
  32. Jafari E, nikudel MR, Ahmadi A (2010) Evaluation of strength characteristics of rocks using block and cylindrical punch test results. J Sci University Tehran 36:169–183Google Scholar
  33. Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994.  https://doi.org/10.1016/S1365-1609(01)00039-9 CrossRefGoogle Scholar
  34. Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589.  https://doi.org/10.1016/j.ijrmms.2005.02.004 CrossRefGoogle Scholar
  35. Kallu RR, Roghanchi P (2015) Correlations between direct and indirect strength test methods. Int J Min Sci Tech 25:355–360.  https://doi.org/10.1016/j.ijmst.2015.03.005 CrossRefGoogle Scholar
  36. Karakus M, Tutmez B (2006) Fuzzy and multiple regression modeling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech Rock Eng 39:45–57.  https://doi.org/10.1007/s00603-005-0050-y CrossRefGoogle Scholar
  37. Kayabasi A, Gokceoglu C, Ercanoglu M (2003) Estimating the deformation modulus of rock masses: a comparative study. Int J Rock Mech Min Sci 40:55–63.  https://doi.org/10.1016/S1365-1609(02)00112-0 CrossRefGoogle Scholar
  38. Khademi Hamidi J, Shahriar K, Rezai B, Bejari H (2009) Application of fuzzy set theory to rock engineering classification systems: an illustration of the rock mass excavability index. Rock Mech Rock Eng 43:335–350.  https://doi.org/10.1007/s00603-009-0029-1 CrossRefGoogle Scholar
  39. Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514.  https://doi.org/10.1007/s00024-012-0556-7 CrossRefGoogle Scholar
  40. Khandelwal M, Singh TN (2009) Correlating static properties of coal measures rocks with P-wave velocity. Int J Coal Geol 79:55–60.  https://doi.org/10.1016/j.coal.2009.01.004 CrossRefGoogle Scholar
  41. Khanlari GR, Heidari M, Sepahigero AA, Fereidooni D (2014) Quantification of strength anisotropy of metamorphic rocks of the Hamedan province, Iran, as determined from cylindrical punch, point load and Brazilian tests. Eng Geol 169:80–90.  https://doi.org/10.1016/j.enggeo.2013.11.014 CrossRefGoogle Scholar
  42. Kilic A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67:237–244.  https://doi.org/10.1007/s10064-008-0128-3 CrossRefGoogle Scholar
  43. Menard S (1995) Applied logistic regression analysis: sage university series on quantitative applications in the social sciences. Sage, Thousand OaksGoogle Scholar
  44. Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6(6):1925–1931.  https://doi.org/10.1007/s12517-011-0460-y CrossRefGoogle Scholar
  45. Mishra DA, Basu A (2012) Use of the block punch test to predict the compressive and tensile strengths of rocks. Int J Rock Mech Min Sci 51:119–127.  https://doi.org/10.1016/j.ijrmms.2012.01.016 CrossRefGoogle Scholar
  46. Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 60:54–68.  https://doi.org/10.1016/j.enggeo.2013.04.004 CrossRefGoogle Scholar
  47. Monjezi M, Rezaei M, Yazdian Varjani A (2009) Prediction of rock fragmentation due to blastingin Gol-E-Gohar iron mine using fuzzy logic. Int J Rock Mech Min Sci 46:1273–1280.  https://doi.org/10.1016/j.ijrmms.2009.05.005 CrossRefGoogle Scholar
  48. Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech Geol Eng 30(4):1053–1062.  https://doi.org/10.1007/s10706-012-9510-9 CrossRefGoogle Scholar
  49. Moradian Z, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9(1):14–19.  https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14) CrossRefGoogle Scholar
  50. Pells PJN (1975) The use of the point load test in predicting the compressive strength of rock materials. Aust Geomech J 95(1):54–56Google Scholar
  51. Rezaei M, Majdi A, Monjezi M (2012) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 24(1):233–241.  https://doi.org/10.1007/s00521-012-1221-x CrossRefGoogle Scholar
  52. Roghanchi P, Kallu RR (2014) Block punch index (BPI) test—a new consideration on validity and correlations for Basalt and Rhyolite rock types. J Min Sci 50(3):475–483.  https://doi.org/10.1134/S1062739114030090 CrossRefGoogle Scholar
  53. Sabzehei M, Roshan Ravan J, Amini B, Eshraghi SA, Alai Mahabadi S, Seraj M (1993) Geological Quadrangle Map of Iran, No H-11, scale 1: 250000. Geological Survey of IranGoogle Scholar
  54. Sahandi MR, Radfar J, Hoseinidoust J, Mohajjel M (2006) Geological map of Iran, 1:100000 series, sheet 5857. Geological Survey of IranGoogle Scholar
  55. Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22.  https://doi.org/10.1007/s10064-007-0109-y CrossRefGoogle Scholar
  56. Singh R, Kainthola A, Singh TN (2012a) Estimation of elastic constant of rocks using an ANFIS approach. Appl Soft Comput 12(1):40–45.  https://doi.org/10.1016/j.asoc.2011.09.010 CrossRefGoogle Scholar
  57. Singh TN, Kainthola A, Venkatesh A (2012b) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45:259–264.  https://doi.org/10.1007/s00603-011-0192-z CrossRefGoogle Scholar
  58. Sonmez H, Tunusluoglu C (2008) New considerations on the use of block punch index for predicting the uniaxial compressive strength of rock material. Int J Rock Mech Min Sci 45:1007–1014.  https://doi.org/10.1016/j.ijrmms.2007.11.001 CrossRefGoogle Scholar
  59. Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min Sci 41:717–729.  https://doi.org/10.1016/j.ijrmms.2004.01.011 CrossRefGoogle Scholar
  60. Sulukcu S, Ulusay R (2001) Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 38:1091–1111.  https://doi.org/10.1016/S1365-1609(01)00079-X CrossRefGoogle Scholar
  61. Tugrul A, Gurpinar O (1997) A proposed weathering classification for basalts and their engineering properties (Turkey). Bull Assoc Eng Geol 55:139–149.  https://doi.org/10.1007/BF02635416 CrossRefGoogle Scholar
  62. Ulusay R, Gokceoglu C, Sulukcu S (2001) Draft ISRM suggested method for determining block punch strength index (BPI). Int J Rock Mech Min Sci 38:1113–1119.  https://doi.org/10.1016/S1365-1609(01)00078-8 CrossRefGoogle Scholar
  63. Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122.  https://doi.org/10.1016/j.ijrmms.2013.05.005 CrossRefGoogle Scholar
  64. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353.  https://doi.org/10.1016/S0019-9958(65)90241-X CrossRefGoogle Scholar
  65. Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3):141–158.  https://doi.org/10.1016/j.enggeo.2007.10.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bahman Saedi
    • 1
  • Seyed Davoud Mohammadi
    • 1
    Email author
  • Hossein Shahbazi
    • 1
  1. 1.Department of Geology, Faculty of SciencesBu-Ali Sina UniversityHamedanIran

Personalised recommendations