Advertisement

The development of a conceptual model for arsenic mobilization in a fluvio-eolian aquifer using geochemical and statistical methods

  • F. Bécher QuinodózEmail author
  • L. Maldonado
  • M. Blarasin
  • E. Matteoda
  • V. Lutri
  • A. Cabrera
  • J. Giuliano Albo
  • D. Giacobone
Original Article
  • 83 Downloads

Abstract

The studied area is part of the sandy plain of the South of Córdoba (Argentina). The objective of this work was to better understand the controls on groundwater geochemistry in the unconfined aquifer, especially in relation to arsenic occurrence and mobilization in groundwater, to provide baseline information for water managers. The aquifer shows a varied spatial geochemical pattern with fresh-to-salty water (0.4–10.0 g/L) and sodium bicarbonate-to-sodium chloride geochemical types, in some places of mixed anionic type. The groundwater dynamics and the geochemical features are influenced by changes in lithology and by large changes in relief at both a regional and a local scale. Numerical modeling suggested that the dissolution of carbonate minerals, cation exchange, and mineral hydrolysis are the main geochemical processes that support the chemical groundwater composition. Although the variation in As concentrations does not follow clear trends associated with major ion chemistry, laboratory batch tests, and geochemical modelingσ supported by statistical analysis indicated, As solubility is favored under alkaline and high pH conditions. Thus, the As values would be closely related to the desorption from the surfaces of oxides and hydroxides, due to the change in their net surface charge from positive to negative as the pH increases. The Eh–pH conditions show that the main species in solution are HAsO42−. The results suggest a need to carry out epidemiological and toxicological studies which are scarce or even absent in the South of Córdoba province.

Keywords

Geochemistry Loess Water quality 

Notes

Acknowledgements

The research was supported by FONCYT and MINCYT (PID 35/08 Prestamo BID), SECYT UNRC and the National Council of Scientific and Technical Research (CONICET).

References

  1. American Public Health Association. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC, 1220pGoogle Scholar
  2. Anawar HM, Akai J, Sakugawa H (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54(6):753–762CrossRefGoogle Scholar
  3. Appelo CAJ, Postma D (1996) Ion exchange and sorption. Geochemistry, groundwater and pollution. Balkema, Rotterdam, pp 142–204Google Scholar
  4. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30(4):345–353CrossRefGoogle Scholar
  5. Ayerza A (1918) Arsenicismo regional endémico (keratodermia y melanodermia combinadas). Boletín de la Academia Nacional de Medicina 1:11–41Google Scholar
  6. Barranquero RS, Varni M, Vega M, Pardi R, Ruiz de Galarreta, A (2017) Arsenic, fluoride and other trace elements in the Argentina Pampean plain. Geologica acta 15(3):0187–200Google Scholar
  7. Bates MN, Rey OA, Biggs ML, Hopenhayn C, Moore LE, Kalman D, Smith AH (2004) Case-control study of bladder cancer and exposure to arsenic in Argentina. Am J Epidemiol 159(4):381–389CrossRefGoogle Scholar
  8. Bécher Quinodóz F (2014) Implicancias ambientales de las relaciones hidrodinámicas e hidroquímicas entre aguas superficiales y subterráneas en la planicie arenosa del Sur de Córdoba. Argentina (Doctoral dissertation, Tesis doctoral, Universidad Nacional de Río Cuarto (inédita), Río Cuarto), p 412Google Scholar
  9. Bécher Quinodóz FN, Blarasin M (2015) Evaluación de relaciones acuífero libre-lagunas mediante modelación hidrogeoquímica e isotópica en la planicie medanosa del sur de Córdoba-Argentina. Serie correlación geológica 31(2)Google Scholar
  10. Bécher Quinodóz FN, Blarasin M (2016) Evaluación de relaciones geomorfología-calidad de agua subterránea mediante técnicas estadísticas y modelación numérica en la planicie arenosa del sur de Córdoba. Argentina Geoacta 41(2):1–16Google Scholar
  11. Bécher Quinodóz FN, Blarasin MT, Panarello HO (2015) Modelado geoquímico e isotópico de las relaciones agua superficial-subterránea en la planicie arenosa del Sur de Córdoba. Revista de la Asociación Geológica Argentina 72(4):506–518Google Scholar
  12. BgS D (2001) Arsenic contamination of groundwater in Bangladesh. British Geological Survey (Technical Report, WC/00/19. 4 Volumes). British Geological Survey, KeyworthGoogle Scholar
  13. Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic contaminated groundwater in alluvial aquifers from delta plains, Eastern India: options for safe drinking water supply. Int J Water Resour Dev 13(1):79–92CrossRefGoogle Scholar
  14. Bhattacharya P, Welch AH, Ahmed KM, Jacks G, Naidu R (2004) Arsenic in groundwater of sedimentary aquifers. Appl Geochem 2(19):163–167CrossRefGoogle Scholar
  15. Bhattacharya P, Claesson M, Bundschuh J, Sracek O, Fagerberg J, Jacks G, Thir JM et al (2006) Distribution and mobility of arsenic in the Rio Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Sci Total Environ 358(1–3):97–120CrossRefGoogle Scholar
  16. Blarasin M, Degiovanni S, Cabrera A, Villegas M (2005) Aguas superficiales y subterráneas en el Sur de Córdoba: una perspectiva geoambiental. UNRCGoogle Scholar
  17. Blarasin M, Cabrera A, Matteoda E (2014) Aguas subterráneas de la provincia de Córdoba. UniRío. Universidad Nacional de Río Cuarto, ArgentinaGoogle Scholar
  18. Borgoño JM, Vicent P, Venturíno H, Infante A (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105Google Scholar
  19. Cantú MP (1992) Provincia de Córdoba. El Holoceno de la Argentina: Argentina, Cadinqua I, pp 1–16Google Scholar
  20. Carignano C, Kröhling D, Degiovanni S, Cioccale M (2014) Geomorfología. In: Relatorio XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba: Córdoba, Asociación Geológica Argentina, pp 747–822Google Scholar
  21. Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Mukherjee SC et al. (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58(1):3–22CrossRefGoogle Scholar
  22. Cheng TJ, Ke DS, Guo HR (2010) The association between arsenic exposure from drinking water and cerebrovascular disease mortality in Taiwan. Water Res 44(19):5770–5776CrossRefGoogle Scholar
  23. Criado Roque P, Mombrú C, Ramos V (1981) Estructura e interpretación tectónica. In: Geología de la provincia de San Luis. Relatorio. Buenos Aires: 8vo Congreso Geológico Argentino, pp 155–192Google Scholar
  24. Custodio E (1993) Aquifer intensive exploitation and over-exploitation with respect to sustainable developmentGoogle Scholar
  25. Das D, Samanta G, Mandal BK, Chowdhury TR, Chanda CR, Chowdhury PP, Chakraborti D et al (1996) Arsenic in groundwater in six districts of West Bengal, India. Environ Geochem Health 18(1):5–15CrossRefGoogle Scholar
  26. De la Peña-Torres A, Cano-Rodríguez I, Aguilera-Alvarado AF, Gamiño-Arroyo Z, Gómez-Castro FI, Gutiérrez-Valtierra MP, Soriano-Pérez S (2012) Adsorción y desorción de arsénico en oxihidróxidos de fierro sintéticos como modelo de estudio para explicar uno de los mecanismos de su lixiviación de jales mineros. Revista mexicana de ingeniería química 11(3):495–503Google Scholar
  27. Degiovanni S, Villegas M, Blarasin M, y Sagripanti G (2005) Hoja Geológica 3363-III Río Cuarto. 1:250.000. Programa Nacional de Cartas Geológicas. Secretaría de Minería de la Nación (SEGEMAR). Boletín No 349. ArgentinaGoogle Scholar
  28. del Carmen Blanco M, Paoloni JD, Morrás H, Fiorentino C, Sequeira ME, Amiotti NN, Espósito M et al (2012) Partition of arsenic in soils sediments and the origin of naturally elevated concentrations in groundwater of the southern pampa region (Argentina). Environ Earth Sci 66(7):2075–2084CrossRefGoogle Scholar
  29. Díaz SL, Espósito ME, del Carmen Blanco M, Amiotti NM, Schmidt ES, Sequeira ME, Nicolli HB et al (2016) Control factors of the spatial distribution of arsenic and other associated elements in loess soils and waters of the southern Pampa (Argentina). Catena 140:205–216CrossRefGoogle Scholar
  30. Farías SS, Casa VA, Vázquez C, Ferpozzi L, Pucci GN, Cohen IM (2003) Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci Total Environ 309(1–3):187–199CrossRefGoogle Scholar
  31. Francisca FM, Perez MEC (2009) Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environ Geochem Health 31(6):673CrossRefGoogle Scholar
  32. Gerstenfeld S, Jordán A, Calli R, Farías P, Malica J, Gómez Peña ML, Flores Ivaldi E et al (2012) Determinación de zonas de riesgo al agua arsenical y prevalencia de HACRE en Villa Belgrano, Tucumán, Argentina. Rev argent salud publica 3(10):24–29Google Scholar
  33. Gomez ML, Blarasin MT, Martínez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57(1):143–155CrossRefGoogle Scholar
  34. Goyenechea M (1917) Sobre la nueva enfermedad descubierta en Bell-Ville. Rev Med Rosario 7:485Google Scholar
  35. Grau-Perez M, Navas-Acien A, Galan-Chilet I, Briongos-Figuero LS, Morchon-Simon D, Bermudez JD, Gomez-Ariza JL et al (2018) Arsenic exposure, diabetes-related genes and diabetes prevalence in a general population from Spain. Environ Pollut 235:948–955CrossRefGoogle Scholar
  36. Guo H, Zhang Y, Xing L, Jia Y (2012) Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia. Appl Geochem 27(11):2187–2196CrossRefGoogle Scholar
  37. Hassan MM (2018) Arsenic in groundwater: poisoning and risk assessment. CRC Press, Boca RatonCrossRefGoogle Scholar
  38. Healy RW (2010) Estimating groundwater recharge. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Iriondo M (1999) Climatic changes in the South American plains: records of a continent-scale oscillation. Quatern Int 57:93–112CrossRefGoogle Scholar
  40. Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430(6995):68CrossRefGoogle Scholar
  41. Kar S, Maity JP, Jean JS, Liu CC, Nath B, Yang HJ, Bundschuh J (2010) Arsenic-enriched aquifers: occurrences and mobilization of arsenic in groundwater of Ganges Delta Plain, Barasat, West Bengal, India. Appl Geochem 25(12):1805–1814CrossRefGoogle Scholar
  42. Kar S, Maity JP, Jean JS, Liu CC, Liu CW, Bundschuh J, Lu HY (2011) Health risks for human intake of aquacultural fish: Arsenic bioaccumulation and contamination. J Environ Sci Health Part A 46(11):1266–1273CrossRefGoogle Scholar
  43. Kostadinoff J, Gregori D (2004) La cuenca de Mercedes, provincia de San Luis. Revista de la Asociación Geológica Argentina 59(3):488–494Google Scholar
  44. Lepori ECV (2015) Hidroarsenicismo crónico regional endémico en Argentina. Acta bioquímica clínica latinoamericana 49(1):83–104Google Scholar
  45. Li G, Sun GX, Williams PN, Nunes L, Zhu YG (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37(7):1219–1225CrossRefGoogle Scholar
  46. Lianfang W (1994) Chronic arsenism from drinking water in some areas of Xinjiiang, China. In: Human health and ecosystem effects, pp 159–172Google Scholar
  47. Liu CW, Wang SW, Jang CS, Lin KH (2006) Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan. J Environ Qual 35(1):68–75CrossRefGoogle Scholar
  48. Lu TH, Su CC, Chen YW, Yang CY, Wu CC, Hung DZ, Huang CF et al (2011) Arsenic induces pancreatic β-cell apoptosis via the oxidative stress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signaling pathways. Toxicol Lett 201(1):15–26CrossRefGoogle Scholar
  49. Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25(8):1414–1419CrossRefGoogle Scholar
  50. McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Lowry D et al (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl Geochem 19(8):1255–1293CrossRefGoogle Scholar
  51. Mukherjee AB, Bhattacharya P (2001) Arsenic in groundwater in the Bengal Delta Plain: slow poisoning in Bangladesh. Environ Rev 9(3):189–220CrossRefGoogle Scholar
  52. Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23(4):863–894CrossRefGoogle Scholar
  53. Mushtaq N, Younas A, Mashiatullah A, Javed T, Ahmad A, Farooqi A (2018) Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere 200:576–586CrossRefGoogle Scholar
  54. Nath B, Jean JS, Lee MK, Yang HJ, Liu CC (2008a) Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. J Contam Hydrol 99(1–4):85–96CrossRefGoogle Scholar
  55. Nath B, Stüben D, Mallik SB, Chatterjee D, Charlet L (2008b) Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Appl Geochem 23(5):977–995CrossRefGoogle Scholar
  56. Nath B, Maity JP, Jean JS, Birch G, Kar S, Yang HJ, Chatterjee D et al (2011) Geochemical characterization of arsenic-affected alluvial aquifers of the Bengal Delta (West Bengal and Bangladesh) and Chianan Plains (SW Taiwan): implications for human health. Appl Geochem 26(5):705–713CrossRefGoogle Scholar
  57. Nicolli HB, Suriano JM, Peral MAG, Ferpozzi LH, Baleani OA (1989) Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Córdoba, Argentina. Environ Geol Water Sci 14(1):3–16CrossRefGoogle Scholar
  58. Nicolli HB, Smedley PL, Tullio JO (1997) Aguas subterráneas con altos contenidos de flúor, arsénico y otros oligoelementos en el norte de la provincia de La Pampa: estudio preliminar. In: Congreso Internacional sobre Aguas y Workshop sobre Química Ambiental y Salud. Abstracts, III-40, Buenos Aires, ArgentinaGoogle Scholar
  59. Nicolli HB, Tineo A, Garcia J (2007) CM Falc ón”. In: Presencia de arsénico en las aguas subterráneas del sector sur de la Provincia de Tucumán, Argentina. II Taller Arsénico en Aguas,” in III Seminario Hispano-Latinoamericano sobre Temas Actuales de Hidrología Subterránea y V Congreso Hidrogeológico Argentino, pp 107–114Google Scholar
  60. Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56CrossRefGoogle Scholar
  61. Palacios SV, Guglielmino CM, Verea MA, yPecotche DM (2012) HACRE. Hidroarsenicismo Crónico Regional y Endémico. Arch Argent Dermatol 62:233–238Google Scholar
  62. Parkhurst DL (1999) User’s guide to PHREEQC (version 2) a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259. US Geological Survey. http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc
  63. Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis, vol 28. Wiley, New YorkCrossRefGoogle Scholar
  64. Reza AS, Jean JS, Lee MK, Liu CC, Bundschuh J, Yang HJ, Lee YC et al (2010) Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh. Water Res 44(19):5556–5574CrossRefGoogle Scholar
  65. Reza AS, Jean JS, Lee MK, Kulp TR, Hsu HF, Liu CC, Lee YC (2012) The binding nature of humic substances with arsenic in alluvial aquifers of Chianan Plain, southwestern Taiwan. J Geochem Explor 114:98–108CrossRefGoogle Scholar
  66. Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11(3–4):171–185CrossRefGoogle Scholar
  67. Sancha AM, O’Ryan R (2008) Managing hazardous pollutants in Chile: arsenic. In: Reviews of environmental contamination and toxicology, vol 196. Springer, New York, pp 123–146Google Scholar
  68. Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J (2013) Arsenic in foodchain and community health risk: a study in Gangetic West Bengal. Proc Environ Sci 18:2–13CrossRefGoogle Scholar
  69. Saxena V, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40(9):1084–1087CrossRefGoogle Scholar
  70. Shankar S, Shanker U (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:304524.  https://doi.org/10.1155/2014/304524 CrossRefGoogle Scholar
  71. Smedley PL (1996) Arsenic in rural groundwater in Ghana: part special issue: hydrogeochemical studies in sub-Saharan Africa. J Afr Earth Sc 22(4):459–470CrossRefGoogle Scholar
  72. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568CrossRefGoogle Scholar
  73. Smedley PL, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM (2000) Arsenic and other quality problems in groundwater from northern La Pampa Province, ArgentinaGoogle Scholar
  74. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17(3):259–284CrossRefGoogle Scholar
  75. Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Alonso MS et al (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20(5):989–1016CrossRefGoogle Scholar
  76. SPSS. Statistics, I. I. S (2012) Statistics, I. I. S. V21. 0. IBM, New YorkGoogle Scholar
  77. Steinmaus C, Bates MN, Yuan Y, Kalman D, Atallah R, Rey OA, Smith AH et al (2006) Arsenic methylation and bladder cancer risk in case–control studies in Argentina and the United States. J Occup Environ Med 48(5):478–488CrossRefGoogle Scholar
  78. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd ed. A Wiley-Interscience Publication, New York, pp 149–152Google Scholar
  79. Vital B, Bartacek J, Ortega-Bravo JC, Jeison D (2018) Treatment of acid mine drainage by forward osmosis: Heavy metal rejection and reverse flux of draw solution constituents. Chem Eng J 332:85–91CrossRefGoogle Scholar
  80. Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244CrossRefGoogle Scholar
  81. Welch AH, Lico MS (1998) Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Appl Geochem 13(4):521–539CrossRefGoogle Scholar
  82. Welch AH, Stollenwerk KG (eds) (2003) Arsenic in ground water: geochemistry and occurrence. Springer Science & Business Media, BerlinGoogle Scholar
  83. Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Groundwater 38(4):589–604CrossRefGoogle Scholar
  84. WHO. World Health Organization (2001) The World Health Report 2001: Mental health: new understanding, new hope. World Health Organization, GenevaGoogle Scholar
  85. WHO Expert Consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157CrossRefGoogle Scholar
  86. WHO (2011) Guidelines for drinking-water quality. WHO Chron 38(4):104–108 (Edition, F) Google Scholar
  87. Yongfeng J, Huaming G (2013) Hot topics and trends in the study of high arsenic groundwater. Adv Earth Sci 28(1):51–61Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology, FCEFQyNNational University of Rio CuartoRío CuartoArgentina
  2. 2.Departamento de Geología, FCEFQyN CONICETUniversidad Nacional de Río CuartoRío CuartoArgentina

Personalised recommendations