Advertisement

Geochemistry of high concentrations of fluoride in groundwater at Oued Rmel aquifer (North-eastern Tunisia), and risks to human health from exposure through drinking water

  • Meriem AmeurEmail author
  • Fadoua Hamzaoui-Azaza
  • Lilia Ben Cheikha
  • Moncef Gueddari
Original Article
  • 75 Downloads

Abstract

The Oued Rmel aquifer, in Zaghouan city in north-eastern Tunisia, extends geographically between 36°18′ and 36°26′ North, and between 10°06′ and 10°24′ East. The groundwater of the Oued Rmel aquifer is exploited for drinking and irrigation purposes. To monitor the chemical water quality, and especially to identify the occurrence and behaviour of fluoride, 23 water samples were collected in January 2013, and analysed for chemicals parameters such as Na+, Ca2+, Mg2+, K+, Cl, SO42−, HCO3 and F. This study applied conventional techniques such as hydrochemical compositions, multivariate statistical methods, Geochemical Modeling and Geographical Information Systems (GIS). Concentrations of fluoride in samples from the Oued Rmel aquifer ranged from 4 to 22 mg/L. The highest values were observed in the surroundings of hydrothermal sources, especially from Hammam Zriba and Hammam Djedidi. Compared with international and national guidelines, all analysed samples exceeded the maximum permissible concentration, in drinking water, of WHO and Tunisian Standards (NT.09.14), which are 1.5 and 1.2 mg/L, respectively. Consequently, up to 75% of the population in the region who use groundwater as a source of drinking water are at risk of developing dental or skeletal fluorosis. Thus, the treatment of fluoridated water through methods such as precipitation, ion exchange, electrodialysis, and reverse osmosis is essential.

Keywords

Fluoride Human consumption WHO Oued Rmel aquifer Dental and skeletal fluorosis Tunisia. 

Notes

Acknowledgements

The authors would like to express their deep gratitude to the Regional Direction of Agriculture and Water Resources of Zaghouan (North-eastern Tunisia) and the Resources Water Direction of Tunis (DGRE) for their valuable aid during the sampling campaigns.

References

  1. Ameduri B, Boutevin B (2000) Polymères Fluores: synthèses, propriétés Et applications. L'Actualité Chimique. pp 23–32  Google Scholar
  2. Ameur M, Hamzaoui-Azaza F, Gueddari M (2015) Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques. Environ Geochem Health 38(5):1147–1167.  https://doi.org/10.1007/s10653-015-9780-2 CrossRefGoogle Scholar
  3. Ameur M, Hamzaoui-Azaza F, Gueddari M (2016) Nitrate contamination of Sminja aquifer groundwater in Zaghouan, northeast Tunisia: WQI and GIS assessments. Desalin Water Treat 57:23698–23708CrossRefGoogle Scholar
  4. Ameur M, Hamzaoui-Azaza F, Ben Cheikha L, Gueddari M (2018) A GIS mapping assessment of the suitability of the Oued Rmel aquifer for irrigation in the Zaghouan district (north-eastern Tunisia). Environ Earth Sci 77:7CrossRefGoogle Scholar
  5. Armienta MA, Segovia N (2008) Arsenic and fluoride in the groundwater of Mexico. Environ Geochem Health 30:345–353CrossRefGoogle Scholar
  6. Ashraf S, Afshari H (2013) Assessment of groundwater chemical quality, using inverse distance weighted method. J Chem Health Risk 3(4):55–62Google Scholar
  7. Attia R, Agrébaoui S, Hamrouni H (2005) Application des Directives CAR/PAP pour la formulation d’un programme de gestion de contrôle de l’érosion et de la désertification. Cas du bassin versant de l’Oued Rmel. Rapport final. Programme d’Actions Prioritaires (PNUE), p 78Google Scholar
  8. Chaturvedi AK, Pathak KC, Singh VN (1988) Fluoride removal from water by adsorption on China clay. Appl Clay Sci 3(4):337–346CrossRefGoogle Scholar
  9. Dissanayake CB (1991) The fluoride problem in the groundwater of Sri Lanka environmental management and health. Int J Environ Stud 38:137–156CrossRefGoogle Scholar
  10. Gaujous D (1998) La pollution des milieux aquatiques: aide-mémoire. 2ème Ed. Lavoisier, Technique et documentation, Paris, p 220Google Scholar
  11. Goyer N (1981) Métaux lourds. Québec Environnement Québec, Ministère des communicationsGoogle Scholar
  12. Guissouma W, Hakami O, Al-Rajab AJ, Tarhouni J (2017) Risk assessment of fluoride exposure in drinking water of Tunisia. Chemistry 177:102–108Google Scholar
  13. Hamzaoui-Azaza F, Gueddari M, Bouhlila R (2009) Geochemistry of fluoride and major ion in the groundwater samples of Triassic aquifer (South eastern Tunisia), through multivariate and hydrochemical Techniques. J Appl Sci Res 5:1941–1951Google Scholar
  14. Hamzaoui-Azaza F, Ameur M, Bouhlila R, Gueddari M (2012) Geohemical Characterization of groundwater in a Miocene Aquifer, Southeastern Tunisia. Environ Eng Geocsci 18:159–174CrossRefGoogle Scholar
  15. Heidweiller VML (1990) Fluoride removal methods. In proceedings symposium on endemic fluorosis in developing countries: causes, effects and possible solutions (J. E. Frencken, Ed.), NIPG-TNO, pp 51–85Google Scholar
  16. High Authority of Health (2010) Public Health Recommendation. Prevention strategies Tooth decayGoogle Scholar
  17. IAPO (2004) 24th course professional master geomatics and natural resources evaluation land evaluation in the Oued Rmel catchment Tunisia: Instituto Agronomico Per l’Oltremare, p 149Google Scholar
  18. INS (National Institute of Statistics) (2014) General census of population and housing. Governorate of Zaghouan, Zaghouan, p 128Google Scholar
  19. Jilali A, Zarhloule Y, Georgiadis M (2015) Vulnerability mapping and risk of groundwater of the oasis of Figuig, Morocco: application of DRASTIC and AVI methods. Arab J Geosci 8:1611–1621CrossRefGoogle Scholar
  20. Kanfir R (1984) Exploitation des nappes d’eau souterraine du gouvernorat de Zaghouan. Rapp Int DGRE p 5Google Scholar
  21. Lachaize JL (1969) Problème posés par la teneur en fluor des eaux servant à l’alimentation. Normes Internationales. Rapport B.R.G.M. p 21Google Scholar
  22. Mandinic Z, Curcic M, Antonijevic B, Carevic M, Mandic J, Djukic-Cosic D, Lekic CP (2010) Fluoride in drinking water and dental fluorosis. Sci Total Environ 408:3507–3512CrossRefGoogle Scholar
  23. Murray J (1986) Appropriate use of fluorides for human health. World Health Organization, Geneva, p 66Google Scholar
  24. N’dao L, Lagaude A, Travi Y (1992) Défluoruration expérimentale des eaux souterraines du Sénégal par le sulfate d’aluminium. Sci Tech Eau 26:243–249Google Scholar
  25. Nawlakhe WG, Bulusu KR (1989) Nalgonda technique-A process for removal of excess fluoride from water. Water Qual Bull 14:218–220Google Scholar
  26. Panneer M, Sivakumar R, Senthilkumar M (2017) Fluoride hydrogeochemistry and its occurrence in drinking water in Morappur region of Dharmapuri District, South India. Int J Environ Sci TechnolGoogle Scholar
  27. Petersen PE (2003) The World Oral Health Report 2003: Continuous improvement of oral health in the 21st century-the approach of the WHO Global Oral Health Programme. Commun Dent Oral Epidemiol 31:3–24CrossRefGoogle Scholar
  28. Quarton M (1999) Le fluor: un élément à surveiller. L’Act 1–5Google Scholar
  29. Ravindra K, Garg V (2006) Distribution of fluoride in groundwater and its suitability assessment for drinking purpose. Int J Environ Health Res 16(2):163–166CrossRefGoogle Scholar
  30. Rekaya M (1981) Contribution à l’étude hydrogéologique du bassin versant de l’Oued Rmel. Thèse de 3ème cycle, Université Pierre et Marie Curie Paris VI, p 122Google Scholar
  31. Ritter AV (2005) Dental fluorosis. J Esthet Restor Dent 17(5):326–327CrossRefGoogle Scholar
  32. Rodier J (2009) L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer. 9ème édition. Dunod Paris. 1600 pGoogle Scholar
  33. Rozel D (2013) Les fluoroses des dents antérieures. Université Claude Bernard Lyon 1, Lyon, p 53Google Scholar
  34. Saha S, Sengupta AK (1993) Fluorodithiostannates. J Fluor Chem 62:1–3.  https://doi.org/10.1016/S0022-1139(00)80074-3 CrossRefGoogle Scholar
  35. Sarala K, Rao PR (1993) Endemic Fluorosis in the Village Ralla, Anantapuram in Andhra Pradesh an Epidemiological Study, Fluoride, Vol 26, pp. 177–180Google Scholar
  36. Schneiter RW, Middlebrooks EJ (1983) Arsenic and fluoride removal from groundwater by reverse Osmosis. Environ Int 9:289–292CrossRefGoogle Scholar
  37. SONEDE (2012) Rapport mensuel du laboratoire. Norme NT.09.14.1pGoogle Scholar
  38. Solsona F (1985) Water defluoridation in the Rift Valley, Ethiopia. UNICEF Technical Report, Addis Ababa, pp 27Google Scholar
  39. Sun L, Gao Y, Liu H, Zhang W, Ding Y (2013) An assessment of the relationship between excess fluoride intake from drinking water and essential hypertension in adults residing in fluoride endemic areas. Sci Total Environ 443:864–869CrossRefGoogle Scholar
  40. Teshome LY, Jim FC, Feleke ZB, David AS (2018) Performance enhancement of Nalgonda technique and pilot testing electrolytic defluoridation system for removing fluoride from drinking water in East Africa. Afr J Environ Sci Technol 12(10):357–369CrossRefGoogle Scholar
  41. Vanderdonck P, Van Kesteren X (1993) Utilisation du chlorure de calcium. Trib Eau 562:39–40Google Scholar
  42. Viessman W, Hammer MJ (1985) Solutions manual to accompany Water supply and pollution control, 4th edn. Harper & Row, New YorkGoogle Scholar
  43. Winnacker K, Küchler L (1962) Traité de chimie appliquée.Tome 2–4. Eyrolles. ParisGoogle Scholar
  44. WHO (2011) Guidelines for drinking–water quality-4th ed. Geneva. World Health Organization. p 564Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Unit of Geochemistry and Environmental Geology, Faculty of Science of TunisUniversity of Tunis El ManarTunisTunisia
  2. 2.National Center for Nuclear Sciences and TechnologiesSidi ThabetTunisia

Personalised recommendations