Advertisement

Multistep rocky slope stability analysis based on unmanned aerial vehicle photogrammetry

  • Shuhong Wang
  • Zishan ZhangEmail author
  • Cungen Wang
  • Chengjin Zhu
  • Yipeng Ren
Original Article
  • 35 Downloads

Abstract

High-steep slope information collection and multistep rocky slope stability analysis play an important role in slope engineering. However, traditional on-site investigations suffer from terrain restrictions and data omissions. This paper presents a block identification method based on UAV (unnamed aerial vehicle) photogrammetry and its computer implementation. An SfM (structure from motion) method is introduced and a 3D reconstruction software-PhotoScan was used to build the DEM (digital elevation model) of the rock mass for real-time monitoring. Then, an RANSAC (random sample consensus) shape detection algorithm was used to search the structural planes in the point cloud model. A computer program GeoSMA-3D (geotechnical structure and model analysis-3D) has been developed to implement engineering applications and a case study was carried out which confirmed the efficiency of the method in dealing with complex surface modeling and multistep rocky slope stability analysis.

Keywords

Block theory UAV Photogrammetry Slope stability RANSAC shape detection 

Notes

Acknowledgements

This work was conducted with supports from the National Natural Science Foundation of China (Grant nos. 51474050 and U1602232), the Fundamental Research Funds for the Central Universities (N17010829), and Doctoral Scientific Research Foundation of Liaoning Province (Grant nos. 20170540304 and 20170520341).

References

  1. Agisoft (2017) PhotoScan v1.3.5. http://www.agisoft.com/. Accessed 27 Feb 2018
  2. Bonilla-Sierra V, Scholtes L, Donze FV, Elmouttie MK (2015) Rock slope stability analysis using photogrammetric data and DFN-DEM modelling. Acta Geotech 10:497–511.  https://doi.org/10.1007/s11440-015-0374-z CrossRefGoogle Scholar
  3. Chen JP, Li K, Chang KJ, Sofia G, Tarolli P (2015) Open-pit mining geomorphic feature characterisation. Int J Appl Earth Obs Geoinf 42:76–86.  https://doi.org/10.1016/j.jag.2015.05.001 CrossRefGoogle Scholar
  4. Corkum AG, Martin CD (2004) Analysis of a rock slide stabilized with a toe-berm: a case study in British Columbia, Canada. Int J Rock Mech Min 41:1109–1121.  https://doi.org/10.1016/j.ijrmms.2004.04.008 CrossRefGoogle Scholar
  5. DJI (2017) DJI phantom 4 drone. https://www.dji.com/cn/phantom-4-pro/info#specs. Accessed 27 Feb 2018
  6. Fiorucci F, Giordan D, Santangelo M, Dutto F, Rossi M, Guzzetti F (2018) Criteria for the optimal selection of remote sensing optical images to map event landslides. Nat Hazards Earth Syst Sci 18:405–417.  https://doi.org/10.5194/nhess-18-405-2018 CrossRefGoogle Scholar
  7. Firpo G, Salvini R, Francioni M, Ranjith PG (2011) Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods. Int J Rock Mech Min 48:1045–1054.  https://doi.org/10.1016/j.ijrmms.2011.07.007 CrossRefGoogle Scholar
  8. Francioni M, Salvini R, Stead D, Litrico S (2014) A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy. Eng Geol 183:290–302.  https://doi.org/10.1016/j.enggeo.2014.09.003 CrossRefGoogle Scholar
  9. Francioni M, Salvini R, Stead D, Coggan J (2018) Improvements in the integration of remote sensing and rock slope modelling. Nat Hazards 90:975–1004.  https://doi.org/10.1007/s11069-017-3116-8 CrossRefGoogle Scholar
  10. Giordan D, Hayakawa Y, Nex F, Remondino F, Tarolli P (2018) Review article: the use of remotely piloted aircraft systems (RPASs) for natural hazards monitoring and management. Nat Hazards Earth Syst Sci 18:1079–1096.  https://doi.org/10.5194/nhess-18-1079-2018 CrossRefGoogle Scholar
  11. Goodman RE, Shi GH (1985) Block theory and its application to rock engineering. Prentice-Hall, LondonGoogle Scholar
  12. Guo J, Liu S, Zhang P, Wu L, Zhou W, Yu Y (2017) Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds. Comput Geosci 103:164–172.  https://doi.org/10.1016/j.cageo.2017.03.017 CrossRefGoogle Scholar
  13. Hu S, Qiu H, Wang X, Gao Y, Wang N, Wu J, Yang D, Cao M (2018) Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs. Landslides 15:593–612.  https://doi.org/10.1007/s10346-017-0922-8 CrossRefGoogle Scholar
  14. Huang H, Long J, Lin H, Zhang L, Yi W, Lei B (2017a) Unmanned aerial vehicle based remote sensing method for monitoring a steep mountainous slope in the Three Gorges Reservoir, China. Earth Sci Inf 10:287–301.  https://doi.org/10.1007/s12145-017-0291-9 CrossRefGoogle Scholar
  15. Huang T, Ding M-t, She T, Tian S-j, Yang J-t (2017b) Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China. J Mt Sci 14:2137–2149.  https://doi.org/10.1007/s11629-017-4516-7 CrossRefGoogle Scholar
  16. James MR, Robson S, d’Oleire-Oltmanns S, Niethammer U (2017) Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 280:51–66.  https://doi.org/10.1016/j.geomorph.2016.11.021 CrossRefGoogle Scholar
  17. John KW (1968) Graphical stability analysis of slopes in jointed rock. J Soil Mech Found Div 94:497–526Google Scholar
  18. Kulatilake P, Wang LQ, Tang HM, Liang Y (2011) Evaluation of rock slope stability for Yujian River dam site by kinematic and block theory analyses. Comput Geotech 38:846–860.  https://doi.org/10.1016/j.compgeo.2011.05.004 CrossRefGoogle Scholar
  19. Leica-geosystem (2017) Leica FlexLine TS06plus. https://leica-geosystems.com/products/total-stations/manual-total-stations/leica-flexline-ts06plus. Accessed 27 Feb 2018
  20. Li HG, Yang ZJ, Hang TL (2013) Study on the rockmass instability of open-pit mine by block theory and numerical simulation methods. In: Tian L, Hou H (eds) Advances in civil and industrial engineering, Pts 1–4. Trans Tech Publications Ltd, Durnten-Zurich, pp 1077–1077+Google Scholar
  21. Ling HI (2001) Recent applications of sliding block theory to geotechnical design. Soil Dyn Earthq Eng 21:189–197.  https://doi.org/10.1016/s0267-7261(01)00007-0 CrossRefGoogle Scholar
  22. Liu TX, Deng JH, Zheng J, Zheng L, Zhang ZH, Zheng HC (2017) A new semi-deterministic block theory method with digital photogrammetry for stability analysis of a high rock slope in China. Eng Geol 216:76–89.  https://doi.org/10.1016/j.enggeo.2016.11.012 CrossRefGoogle Scholar
  23. Lu J (2002) Systematic identification of polyhedral rock blocks with arbitrary joints and faults. Comput Geotech 29:49–72. doi: https://doi.org/10.1016/S0266-352x(01)00018-0 CrossRefGoogle Scholar
  24. Marinos V, Prountzopoulos G, Asteriou P, Papathanassiou G, Kaklis T, Pantazis G, Lambrou E, Grendas N, Karantanellis E, Pavlides S (2017) Beyond the boundaries of feasible engineering geological solutions: stability considerations of the spectacular Red Beach cliffs on Santorini Island, Greece. Environ Earth Sci.  https://doi.org/10.1007/S12665-017-6823-2 CrossRefGoogle Scholar
  25. Nagai M, Chen T, Shibasaki R, Kumagai H, Ahmed A (2009) UAV-borne 3-D mapping system by multisensor integration. IEEE Trans Geosci Remote Sens 47:701–708.  https://doi.org/10.1109/tgrs.2008.2010314 CrossRefGoogle Scholar
  26. Ni P, Wang S, Wang C, Zhang S (2017) Estimation of REV size for fractured rock mass based on damage coefficient. Rock Mech Rock Eng 50:555–570.  https://doi.org/10.1007/s00603-016-1122-x CrossRefGoogle Scholar
  27. OpenGL (2017) OpenGL v4.0. https://www.opengl.org/. Accessed 27 Feb 2018
  28. Rossini M, Di Mauro B, Garzonio R, Baccolo G, Cavallini G, Mattavelli M, De Amicis M, Colombo R (2018) Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 304:159–172.  https://doi.org/10.1016/j.geomorph.2017.12.039 CrossRefGoogle Scholar
  29. Salvini R, Mastrorocco G, Esposito G, Di Bartolo S, Coggan J, Vanneschi C (2018) Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Nat Hazards Earth Syst Sci 18:287–302.  https://doi.org/10.5194/nhess-18-287-2018 CrossRefGoogle Scholar
  30. Saroglou C, Asteriou P, Zekkos D, Tsiambaos G, Clark M, Manousakis J (2018) UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece. Nat Hazards Earth Syst Sci 18:321–333.  https://doi.org/10.5194/nhess-18-321-2018 CrossRefGoogle Scholar
  31. Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput Graph Forum 26:214–226. doi: https://doi.org/10.1111/j.1467-8659.2007.01016.x CrossRefGoogle Scholar
  32. Spreafico MC, Perotti L, Cervi F, Bacenetti M, Bitelli G, Girelli VA, Mandanici E, Tini MA, Borgatti L (2017) Terrestrial remote sensing techniques to complement conventional geomechanical surveys for the assessment of landslide hazard: the San Leo case study (Italy). Eur J Remote Sens 48:639–660.  https://doi.org/10.5721/EuJRS20154835 CrossRefGoogle Scholar
  33. Stumpf A, Malet JP, Kerle N, Niethammer U, Rothmund S (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27.  https://doi.org/10.1016/j.geomorph.2012.12.010 CrossRefGoogle Scholar
  34. Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182.  https://doi.org/10.1016/j.enggeo.2009.03.004 CrossRefGoogle Scholar
  35. Sturzenegger M, Stead D (2012) The Palliser Rockslide, Canadian Rocky Mountains: characterization and modeling of a stepped failure surface. Geomorphology 138:145–161.  https://doi.org/10.1016/j.geomorph.2011.09.001 CrossRefGoogle Scholar
  36. Suh J, Choi Y (2017) Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ Earth Sci.  https://doi.org/10.1007/s12665-017-6458-3 CrossRefGoogle Scholar
  37. Tomastik J, Mokros M, Salon S, Chudy F, Tunak D (2017) Accuracy of photogrammetric UAV-based point clouds under conditions of partially-open forest canopy. Forests.  https://doi.org/10.3390/f8050151 CrossRefGoogle Scholar
  38. Torok A, Barsi A, Bogoly G, Lovas T, Somogyi A, Gorog P (2018) Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling. Nat Hazards Earth Syst Sci 18:583–597.  https://doi.org/10.5194/nhess-18-583-2018 CrossRefGoogle Scholar
  39. Uysal M, Toprak AS, Polat N (2015) DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement 73:539–543.  https://doi.org/10.1016/j.measurement.2015.06.010 CrossRefGoogle Scholar
  40. Wang S, Ni P (2014) Application of block theory modeling on spatial block topological identification to rock slope stability analysis. Int J Comput Methods.  https://doi.org/10.1142/s0219876213500448 CrossRefGoogle Scholar
  41. Wang S, Ni P, Guo M (2013) Spatial characterization of joint planes and stability analysis of tunnel blocks. Tunn Undergr Space Technol 38:357–367.  https://doi.org/10.1016/j.tust.2013.07.017 CrossRefGoogle Scholar
  42. Wang SH, Huang RQ, Ni PP, Jeon S (2017) Advanced discretization of rock slope using block theory within the framework of discontinuous deformation analysis. Geomech Eng 12:723–738.  https://doi.org/10.12989/gae.2017.12.4.723 CrossRefGoogle Scholar
  43. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179:300–314CrossRefGoogle Scholar
  44. Xi W, Li D (2017) Steep slope DEM Model construction based on the unmanned aerial vehicle (UAV) images. Sains Malays 46:2119–2124.  https://doi.org/10.17576/jsm-2017-4611-12 CrossRefGoogle Scholar
  45. Yu M, Huang Y, Zhou J, Mao L (2017a) Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ Earth Sci.  https://doi.org/10.1007/s12665-017-6860-x CrossRefGoogle Scholar
  46. Yu M, Huang Y, Zhou JM, Mao L (2017b) Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ Earth Sci.  https://doi.org/10.1007/s12665-017-6860-x CrossRefGoogle Scholar
  47. Zhang YT, Xiao M, Ding XL, Wu AQ (2012) Improvement of methodology for block identification using mesh gridding technique. Tunn Undergr Space Technol 30:217–229.  https://doi.org/10.1016/j.tust.2012.02.019 CrossRefGoogle Scholar
  48. Zhang QH, Ding XL, Wu AQ (2017) A comparison of the application of block theory and 3D block-cutting analysis. Int J Rock Mech Min 99:39–49.  https://doi.org/10.1016/j.ijrmms.2017.09.005 CrossRefGoogle Scholar
  49. Zhao H, Fang X, Ding H, Strobl J, Xiong L, Na J, Tang G (2017) Extraction of terraces on the loess plateau from high-resolution DEMs and imagery utilizing object-based image analysis. Isprs Int J Geo Inf.  https://doi.org/10.3390/ijgi6060157 CrossRefGoogle Scholar
  50. Zheng YH, Xia L, Yu QC (2015) A method for identifying three-dimensional rock blocks formed by curved fractures. Comput Geotech 65:1–11.  https://doi.org/10.1016/j.compgeo.2014.11.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shuhong Wang
    • 1
  • Zishan Zhang
    • 1
    Email author
  • Cungen Wang
    • 1
  • Chengjin Zhu
    • 1
  • Yipeng Ren
    • 1
  1. 1.College of Resource and Civil EngineeringNortheastern UniversityShenyangChina

Personalised recommendations