Hydrogeological characterization and modelling of weathered karst aquifers. Applicability to dewatering operations in limestone quarries

  • Caroline Dubois
  • Pascal GoderniauxEmail author
  • John Deceuster
  • Angélique Poulain
  • Olivier Kaufmann
Thematic Issue


Limestone aquifers represent an important part of groundwater resources in the world. They are usually considered as fractured karstic rock formations. However, a different type, called ‘weathered’ or ‘ghost-rock’ karst aquifer has recently been highlighted. In this particular type of aquifer, the karst is not expressed as open conduits but consists in zones made of a residual alterite, resulting from the in-situ partial dissolution of limestone. These particular structures are crucial in some areas because they actually govern groundwater flow and transport in the aquifer. They have, however, never been studied from a hydrogeological perspective. In this study, we present a methodology to characterize and model such aquifers. Results show that the ghost-rock features are usually organized into networks, and that their hydraulic properties are variable within each feature, according to the limestone weathering intensity. Measurements in a specific aquifer in Belgium are presented. The modelling approach, derived from the common Equivalent Porous Medium approach, enables to spatially distribute the variable hydraulic properties within the features, from the hard fresh rock to the alterite, in finite difference grids. The method allows creating models including thousands of features and respecting correct connectivity relations. The approach is considered at different scales with varying grid cells sizes. Results show that the induced error increases significantly when the size of the grid cells exceeds the width of the main features controlling flow. The approach is applied on a case study consisting in dewatering operations in an exploited quarry located in a weathered karst aquifer. Presented results provide new insights regarding characterization and modelling of this kind of aquifers, and highlight their importance in hydrological studies.


Fracture network Karst Weathering Groundwater modelling Ghost-rock Equivalent porous media Quarry Dewatering 



Caroline Dubois was funded by FNRS during the period 2011–2015.


  1. Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51(4):641–650Google Scholar
  2. Ackerer P, Delay F (2010) Inversion of a set of well-test interferences in a fractured limestone aquifer by using an automatic downscaling parameterization technique. J Hydrol 389(1–2):42–56CrossRefGoogle Scholar
  3. Audouin O, Bodin J (2008) Cross-borehole slug test analysis in a fractured limestone aquifer. J Hydrol 348(3–4):510–523CrossRefGoogle Scholar
  4. Bariquand L, Bariquand J, Baele JM, Dechamps S, Guillot L, Maire R, Nykiel C, Papier S, Quinif Y (2012) Les grottes d’Azé (Saône-et-Loire, France): de la roche altérée aux sédiments. Karstologia 59:19–32Google Scholar
  5. Bini A, Zuccoli L, Quinif Y (2012) Karst et fantômisation dans la dolomie de la valle imagna (Bergamo, Italie). Karstologia 60(2):1–10Google Scholar
  6. Brunetti E, Jones JP, Petitta M, Rudolph DL (2013) Assessing the impact of large-scale dewatering on fault-controlled aquifer systems: a case study in the acque albule basin (Tivoli, central Italy). Hydrogeol J 21(2):401–423CrossRefGoogle Scholar
  7. Bruxelles L (2002) Ghost structures in the Bajocian limestones of the Causse du Larzac (France). In: Proceedings of the 1st geologica belgica international meeting, Leuven, pp 149–152Google Scholar
  8. Courreges-Blanc M, Maire R (2014) Ghost rock alteration of Oligocene limestones in Medoc, Gironde (France), petrographic and micromorphologic study. Geol Belgica 17(1):9–16Google Scholar
  9. Dandurand G, Maire R (2011) Essai de typologie des cavités du karst de la rochefoucauld (Charente): rôle de la « fantômisation » crétacée, du battement de la nappe et de l’effet de site. Dyn Environ 27:11–28Google Scholar
  10. Dandurand G, Dubois C, Maire R, Quinif Y (2014) The charente karst basin of the Touvre: alteration of the jurassic series and speleogenesis by ghost-rock process. Geol Belgica 17(1):27–32Google Scholar
  11. Dassargues A, Walraevens K (2014) Watervoerende lagen & grondwater in België—aquifères & eaux souterraines en Belgique. Academia Press, Ghent, pp. 472Google Scholar
  12. Dubois C (2015) Effects of weathering phenomena on calcareous rocks: from rock to aquifer properties., PhD Thesis. University of Mons. Faculty of Engineering., pp 376Google Scholar
  13. Dubois C, Lans B, Kaufmann O, Maire R, Quinif Y (2011) Karstification de type fantômes de roche en Entre-deux-Mers. Karstologia, 57: 19–27Google Scholar
  14. Dubois C, Quinif Y, Baele JM, Barriquand L, Bini A, Bruxelles L, Dandurand G, Havron C, Kaufmann O, Lans B, Maire R, Martin J, Rodet J, Rowberry MD, Tognini P, Vergari A, 2014a. The process of ghost-rock karstification and its role in the formation of cave systems. Earth Sci Rev, 131: 116–148CrossRefGoogle Scholar
  15. Dubois C, Quinif Y, Baele JM, Dagrain F, Deceuster J, Kaufmann O (2014b) The evolution of the mineralogical and petrophysical properties of a weathered limestone in southern Belgium. Geol Belgica 17(1):1–8Google Scholar
  16. Dubois C, Deceuster J, Kaufmann O, Rowberry MD (2015) A new method to quantify carbonate rock weathering. Math Geosci 47(8):889–935CrossRefGoogle Scholar
  17. Ebel BA, Loague K (2006) Physics-based hydrologic-response simulation: Seeing through the fog of equifinality. Hydrol Process 20(13):2887–2900CrossRefGoogle Scholar
  18. Fischer P, Jardani A, Wang X, Jourde H, Lecoq N (2017) Identifying flow networks in a karstified aquifer by application of the cellular automata-based deterministic inversion method (Lez Aquifer, France). Water Resour Res 53(12):10508–10522CrossRefGoogle Scholar
  19. Fischer P, Jardani A, Jourde H, Cardiff M, Wang X, Chedeville S, Lecoq N (2018) Harmonic pumping tomography applied to image the hydraulic properties and interpret the connectivity of a karstic and fractured aquifer (Lez aquifer, France). Adv Water Resour 119:227–244CrossRefGoogle Scholar
  20. Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model—the ground-water flow process. U.S. geological survey techniques and methods 6-A16, U.S. geological surveyGoogle Scholar
  21. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: Review of hydrological modeling approaches. Rev Geophys 52(3):218–242CrossRefGoogle Scholar
  22. Hill MC, Tiedeman CR (2007) Effective groundwater model calibration. In: With analysis of data, sensitivities, predictions and uncertainty. John Wiley & Sons, New Jersey, 455 ppGoogle Scholar
  23. Jeannin PY (2001) Modeling flow in phreatic and epiphreatic karst conduits in the Hölloch cave (Muotatal, Switzerland). Water Resour Res 37(2):191–200CrossRefGoogle Scholar
  24. Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36(6):1381–1391CrossRefGoogle Scholar
  25. Kaufmann O, Quinif Y (2002) Geohazard map of cover-collapse sinkholes in the ‘Tournaisis’ area, southern Belgium. Eng Geol 65(2–3):117–124CrossRefGoogle Scholar
  26. Lans B, Maire R, Ortega R, Deves G, Bacquart T, Plaisir C, Quinif Y, Perette Y (2006) Les stalagmites du réseau du trou Noir (Gironde): rôle de l’effet de site dans l’enregistrement du signal climatique et environnemental. Karstologia 48:1–22CrossRefGoogle Scholar
  27. Misstear BDR, Brown L, Williams NH (2008) Groundwater recharge to a fractured limestone aquifer overlain by glacial till in County Monaghan, Ireland. Q J Eng GeolHydrogeol 41(4):465–476CrossRefGoogle Scholar
  28. Morin RH, Hess AE, Paillet FL (1988) Determining the distribution of hydraulic conductivity in a fractured limestone aquifer by simultaneous injection and geophysical logging. Ground Water 26(5):587–595CrossRefGoogle Scholar
  29. Panday S, Langevin CD, Niswonger RG, Ibaraki M, Hughes JD (2013) MODFLOW–USG version 1: an unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation. U.S. Geological Survey Techniques and Methods, book 6, chap A45Google Scholar
  30. Pollock DW (2016) Extending the MODPATH algorithm to rectangular unstructured grids. Groundwater 54(1):121–125CrossRefGoogle Scholar
  31. Price DG (2006) Engineering geology: principles and practice. Springer, New YorkGoogle Scholar
  32. Quinif Y (2010) Fantômes de roche et fantômisation: essai sur un nouveau paradigme en karstogenèse. Karstologia Mémoires, 18Google Scholar
  33. Quinif Y, Maire R (2010) La grotte quentin (Hainaut, Belgique): un modèle évolution des fantômes de roche. Karstol Mém 17:214–218Google Scholar
  34. Quinif Y, Baele JM, Dubois C, Havron C, Kaufmann O, Vergari A (2014) Ghost-karstification theory: a new paradigm between Davis’ two phases’ theory and Erhart’s biorhexistasy theory. Geol Belgica 17(1):66–74Google Scholar
  35. Rodet J (2014) The primokarst, former stages of karstification, or how solution caves can born. Geol Belgica 17(1):58–65Google Scholar
  36. Rowberry MD, Battiau-Queney Y, Walsh P, Blazejowski B, Bout-Roumazeilles V, Trentesaux A, Křížová L, Griffiths H (2014) The weathered carboniferous limestone at Bullslaughter Bay, South Wales: the first example of ghost-rock recorded in the British Isles. Geol Belgica 17(1):33–42Google Scholar
  37. Rowberry M, Dubios C, Kaufmann O, Baele JM, Blahůt J (2018) Weathering by dolomite dissolution responsible for the formation of an important palaeotological locality in the Prague synform. Acta Geodyn Geomaterialia 15(3):297–309CrossRefGoogle Scholar
  38. Samardzioska T, Popov V (2005) Numerical comparison of the equivalent continuum, non-homogeneous and dual porosity models for flow and transport in fractured porous media. Adv Water Res 28:235–255CrossRefGoogle Scholar
  39. Scanlon BR, Mace RE, Barret ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer. USA J Hydrol 276:137–158CrossRefGoogle Scholar
  40. SPW-DGO3 (2014) Etat des nappes d’eau souterraine de Wallonie. Editor: Service Public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2014/11802/11. ISBN 978-2-8056-0142-2Google Scholar
  41. Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23(1–2):1–44CrossRefGoogle Scholar
  42. Wang X, Jardani A, Jourde H, Lonergan L, Cosgrove J, Gosselin O, Massonnat G (2016) Characterisation of the transmissivity field of a fractured and karstic aquifer, Southern France. Adv Water Resour 87:106–121CrossRefGoogle Scholar
  43. White WB (2002) Karst hydrology: Recent developments and open questions. Eng Geol 65(2–3):85–105CrossRefGoogle Scholar
  44. Wildemeersch S, Goderniaux P, Orban P, Brouyère S, Dassargues A (2014) Assessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty. J Hydrol 510:10–25CrossRefGoogle Scholar
  45. Zhang QH (2015) Finite element generation of arbitrary 3-D fracture networks for flow analysis in complicated discrete fracture networks. J Hydrol 529:890–908CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Caroline Dubois
    • 1
    • 2
  • Pascal Goderniaux
    • 1
    Email author
  • John Deceuster
    • 1
    • 3
  • Angélique Poulain
    • 1
    • 4
  • Olivier Kaufmann
    • 1
  1. 1.Geology and Applied GeologyUniversity of MonsMonsBelgium
  2. 2.Fonds de la Recherche Scientifique (FRS-FNRS)BrusselsBelgium
  3. 3.Engineering DepartmentCFEsaBrusselsBelgium
  4. 4.Department of Hydro-GeologyUniversity of Avignon, UMR EMMAHAvignonFrance

Personalised recommendations