Advertisement

Environmental Earth Sciences

, 78:119 | Cite as

Phosphorus limits and “planetary boundaries” approach applied to a case study in a tropical area

  • Luisa Lima Leal
  • Ana Paula Dias TurettaEmail author
  • Michelle Cristina Sampaio
  • Bruno Francisco Teixeira Simões
  • Felipe Rafael Ribeiro Melo
  • Guilherme Kangussu Donagemma
Original Article
  • 21 Downloads

Abstract

The Atlantic Forest is a biome in the SE region of Brazil and is under pressure in terms of biological conservation, which can be considered as a global safeguarding priority. Some areas of this biome present limitations of agricultural use, such as low soil fertility and high susceptibility to erosion. There is risk of eutrophication from runoff, especially in areas with rugged relief and soils with intense phosphate fertilization. The “Planetary Boundaries” approach proposes a safe and fair operating buffer for humanity to continue to develop without an adverse impact on planetary systems. We evaluated the P-level distribution according to soil and land use classes in a watershed under agricultural use in the Atlantic Forest biome in the State of Rio de Janeiro State, Brazil. We also used the Planetary Boundaries approach to check the P sustainability thresholds, which showed to be sensitive to land use and cover classes.

Keywords

Soil class Land use Atlantic Forest Ecosystem services 

Notes

References

  1. Abdi H, Williams L (2010) Principal component analysis, vol 2. John Wiley & Sons, Inc., New York, pp 433–459.  https://doi.org/10.1002/wics.101 CrossRefGoogle Scholar
  2. Agren GI, Wetterstedt JAM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus. New Phytol 194:953–960CrossRefGoogle Scholar
  3. Baligar VC, Fageria NK (1997) Nutrient use efficiency in acid soils: nutrient management and plant use efficiency. In: Moniz AC, Furlani AMC, Schaffert RE et al (eds) International symposium on plant–soil interactions at low pH. Proceedings, 4th edn. Brazilian Soil Science Society, Belo Horizonte, pp 76–95Google Scholar
  4. Batjes NH (2011) Global distribution of soil phosphorus retention potential. Wageningen, ISRIC—World Soil Information (with dataset), ISRIC Report 2011/06, p 42Google Scholar
  5. Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem Cycles 23:1–16.  https://doi.org/10.1029/2009GB003576 CrossRefGoogle Scholar
  6. Brito LF, Pacheco RS, de Souza BF, Ferreira EPD, Straliotto R, Araujo AP (2015) Response of common bean to rhizobium inoculation and supplemental mineral nitrogen in two brazilian biomes. Revista Brasileira De Ciência Do Solo 39:981–992CrossRefGoogle Scholar
  7. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. N Phytol 173:11–26CrossRefGoogle Scholar
  8. Campos MCC, Marques Junior JJ, Martins Filho MV, Pereira GT, Souza ZM, Barbieiri DM (2008) Spatial variation of the soil loss for erosion in different geomorphic surfaces. Ciência Rural 38:2485–2492CrossRefGoogle Scholar
  9. Carpenter SR, Bennett EM (2011) Reconsideration of the planetary boundary for phosphorus. Environ Res Lett 6:12CrossRefGoogle Scholar
  10. Carvalho W Jr, Chagas CS, Calderano Filho B, Bhering SB, Donagemma GK, Araújo FO, Pereira NR (2013) Zoneamento Agroecológico do Município de Bom Jardim, Região Serrana do Estado do Rio de Janeiro. Embrapa Solos. Rio de Janeiro. Boletm de Pesquisa, 230:42. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/145016/1/BPD-230-Zon-Agroecologico-Bom-Jardim.pdf. Accessed 10 Jan 2018
  11. Ceretta CA, Basso CJ, Vieira FCB, Herbes MG, Moreira ICL, Berwanger AL (2005) Pig slurry: I—nitrogen and phosphorus losses by surface run off in a soil cropped under no tillage. Ciência Rural 35:1296–1304CrossRefGoogle Scholar
  12. Chagas CS, Calderano Filho B, Donagemma GK, Fontana A, Bhering SB (2012) Levantamento Semidetalhado dos Solos da Microbacia do córrego do Pito Aceso, Município de Bom Jardim, Região Serrana do Estado do Rio de Janeiro—RJ. Embrapa Solos. Boletim de pesquisa e desenvolvimento, 219:107. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/110756/1/BPD-219-Levant-Microbacia-Pito-Aceso-1.pdf. Accessed 10 Jan 2018
  13. Chen CR, Condron LM, Xu ZH (2008) Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. For Ecol Manag 255:396–409CrossRefGoogle Scholar
  14. Cherubin MR, Custodio Franco AL, Cerri CEP, Oliveira DMS, Davies CA, Cerri CC (2015) Sugarcane expansion in Brazilian tropical soils—effects of land use change on soil chemical attributes. Agric Ecosyst Environ 211:173–184CrossRefGoogle Scholar
  15. Chowdhury RB, Chakraborty P (2016) Magnitude of anthropogenic phosphorus storage in the agricultural production and the waste management systems at the regional and country scales. Environ Sci Pollut Res 23(16):15929–15940CrossRefGoogle Scholar
  16. Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228CrossRefGoogle Scholar
  17. Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2017) Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J Clean Prod 140:945–963CrossRefGoogle Scholar
  18. Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Annu Rev Environ Resour 39:161–188CrossRefGoogle Scholar
  19. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266CrossRefGoogle Scholar
  20. Cunha GD, Gama Rodrigues AC, Costa AC, Velloso ACX (2007) Organic phosphorus in soils under montane forest, pasture and eucalyptin the north of Rio de Janeiro State, Brazil. Revista Brasileira De Ciência Do Solo 31:667–672CrossRefGoogle Scholar
  21. Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838CrossRefGoogle Scholar
  22. Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142CrossRefGoogle Scholar
  23. EMBRAPA (1997) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo, vol 2. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, p 212Google Scholar
  24. ESRI (2018) Arc GIS the complete Geographic Information System. http://www.esri.com/software/arcgis/index.html. Accessed 10 Jan 2018
  25. Foundation TR (2016) R: the R project for statistical computing. https://www.r-project.org/. Accessed 10 Jan 2018
  26. Freire LR, Balieiro FC, Zonta E, Anjos LHC, Pereira MG, Lima E, Guerra JGM, Ferreira MBC, Leal MAA, Campos DVB, Polidoro JC (2013) The limits proposed by the Rio de Janeiro state manual of liming and fertilization, DF, p 430Google Scholar
  27. Girotto E, Ceretta CA, Santos DR, Brunetto G, Andrade JG, Zalamena J (2010) Forms of losses of copper and phosphorus in water of runoff and percolation in soil with successive pig slurry application. Ciência Rural 40(9):1948–1954CrossRefGoogle Scholar
  28. Grain Research and Development Corporation (GRDC) (2012) Crop nutrition phosphorus management fact sheet. Australian Government. http://www.grdc.com.au/Resources/Factsheets/2012/11/Crop-Nutrition-Phosphorus-Management-Fact-Sheet. Accessed 18 Nov 2016
  29. Hongyu K, Sandanielo VLM, de Oliveira Jr GJ (2015) Análise de Componentes Principais: resumo teórico, aplicação e interpretação. E&S Eng Sci 9:1Google Scholar
  30. Jobbágy EG, Sala OE (2014) The imprint of crop choice on global nutrient needs. Environ Res Lett 9(8):1–10.  https://doi.org/10.1088/1748-9326/9/8/084014 CrossRefGoogle Scholar
  31. Lima PC (2016) Agência Embrapa de Informação Tecnologica, Recursos NaturaisGoogle Scholar
  32. Liu Y, Villalba G, Ayres RU, Schroder H (2008) Global phosphorus flows and environmental impacts from a consumption perspective. J Ind Ecol 12:229–247CrossRefGoogle Scholar
  33. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  34. Matos ED, Mendonca ED, Villani EMD, Leite LFC, Galvao JCC (2006) Soil phosphorus forms under systems of sole corn and corn-bean intercrop under organic and mineral fertilizer. Revista Brasileira De Ciencia Do Solo 30:625–632CrossRefGoogle Scholar
  35. McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of p accumulation in agricultural soils—implications for fertiliser management and design: an australian perspective. Plant Soil 349(1–2):69–87CrossRefGoogle Scholar
  36. Mendes CAR (2006) Erosão Superficial em Encosta Íngreme sob Cultivo Perene e com Pousio no Município de Bom Jardim. Doc. Thesis, Universidade Federal do Rio de Janeiro, COPPEGoogle Scholar
  37. Mendes IC, Fernandes MF, Chaer GM, Reis Junior FB (2012) Biological functioning of brazilian cerrado soils under different vegetation types. Plant Soil 359:183–195CrossRefGoogle Scholar
  38. MMA—Ministério do Meio Ambiente (2016) Mata Atlântica. http://www.mma.gov.br/biomas/mata-atlantica. Accessed 18 Nov 2016
  39. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefGoogle Scholar
  40. Nash KL, Cvitanovic C, Fulton EA, Halpern BS, Milner-Gulland EJ, Watson RA, Blanchard JL (2017) Planetary boundaries for a blue planet. Nat Ecol Evol 1:1625–1634CrossRefGoogle Scholar
  41. Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. UFV, DPS, Viçosa, p 399Google Scholar
  42. Pantano G, Grosseli GM, Mozeto AA, Fadini PS (2016) Sustainability in phosphorus use: a question of water and food security. Química Nova 39:732–740Google Scholar
  43. Peregrina F, Mariscal I, Ordonez R, Gonzalez P, Terefe T, Espejo R (2008) Agronomic implications of converter basic slag as a magnesium source on acid soils. Soil Sci Soc Am J 72:402–411CrossRefGoogle Scholar
  44. Pinto FA, de Souza ED, Paulino HB, Curi N, Carneiro MAC (2013) P-sorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Ciênc. agrotec 37(4). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542013000600005. Accessed 10 Jan 2018
  45. Prado RB, Cher GM, Balieiro FC, Donagemma GK, Correia MEF, Peixoto RTG, Chagas CS, Turetta APD, Fidalgo ECC, Fontana A, Schuler AE, Gonçalves AO, Coutinho HLC, Godoy JM, Donagemma RA (2013) Proposta Metodológica para Amostragem de Solo e Água Visando o Monitoramento e Avaliação de Serviços Ambientais em Unidades de Paisagens Rurais. Comunicado Técnico 69. Rio de Janeiro, RJGoogle Scholar
  46. Resende M, Lani JL, Rezende SB (2002) Atlantic forest pedosystems relevant views on sustainability. Revista Árvore Viçosa 26:261–269CrossRefGoogle Scholar
  47. Riskin SH, Porder S, Schipanski ME, Bennett EM, Neill C (2013) Regional differences in phosphorus budgets in intensive soybean agriculture. Bioscience 63:49–54CrossRefGoogle Scholar
  48. Rita JCD, Gama-Rodrigues AC, Gama-Rodrigues EF, Zaia FC, Nunes DAD (2013) Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro. Revista Brasileira De Ciencia Do Solo 37:1207–1215CrossRefGoogle Scholar
  49. Rockstrom J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  50. Sanchez PA (1997) Changing tropical soil fertility paradigms: from Brazil to Africa and back. In: Moniz AC (ed) Plant–soil interactions at low pH. Brazilian Soil Science Society, Lavras, pp 19–28Google Scholar
  51. Santos HG, Jacomine PKT, Anjos LHC, Oliveira V, Lumbreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (2013) Sistema Brasileiro de Classificação de Solos. Embrapa, BrasíliaGoogle Scholar
  52. Sattari SZ, van Ittersum MK, Giller KE, Zhang F, Bouwman AF (2014) Key role of china and its agriculture in global sustainable phosphorus management. Environ Res Lett 9(5):054003CrossRefGoogle Scholar
  53. Sharpley AN, Smith SJ, Naney JW (1987) Environmental impact of agricultural nitrogen and phosphorus use. J Agric Food Chem 35:812–817CrossRefGoogle Scholar
  54. Sharpley AN, McDowell RW, Kleinman JA (2001) Phosphorus loss from land to water: integrating agricultural and environmental management. Plant Soil 237:287–307CrossRefGoogle Scholar
  55. Sposito G (1989) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  56. Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855CrossRefGoogle Scholar
  57. Távora GSG, Turetta APD, Fidalgo ECC, Prado RB (2013) Mapeamento de uso e cobertura da terra de uma bacia de drenagem no Bioma Mata Atlântica com uso de imagem de alta resolução. Boletim de Pesquisa e Desenvolvimento 25. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/141895/1/BPD-229-Mapeamento-Uso.pdf. Accessed 10 Jan 2018
  58. Tiessen H (2005) Phosphorus dynamics in tropical soils. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. Crop Science Society of America Soil Science Society of America, American Society of Agronomy, Madison, pp 253–262Google Scholar
  59. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  60. Tóth G, Guicharnaud R-A, Tóth B, Hermann T (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52CrossRefGoogle Scholar
  61. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19CrossRefGoogle Scholar
  62. Wilbanks TJ (2011) Inducing transformational energy technological change. Energy Econ 33(4):699–708CrossRefGoogle Scholar
  63. Withers PJA, Jarvie HP (2008) Delivery and cycling of phosphorus in rivers: a review. Sci Total Environ 400:379–395CrossRefGoogle Scholar
  64. Xavier FAD, Almeida EF, Cardoso IM, Mendonca ED (2011) Soil phosphorus distribution in sequentially extracted fractions in tropical coffee-agroecosystems in the Atlantic Forest biome, Southeastern Brazil. Nutr Cycl Agroecosyst 89:31–44CrossRefGoogle Scholar
  65. Yi H, Xu GP, Cheng HG, Wang JS, Wan YF, Chen H (2012) An overview of utilization of steel slag. In: 7th international conference on waste management and technology (Icwmt 7), vol 16, pp 791–801Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Luisa Lima Leal
    • 1
  • Ana Paula Dias Turetta
    • 2
    Email author
  • Michelle Cristina Sampaio
    • 3
  • Bruno Francisco Teixeira Simões
    • 4
  • Felipe Rafael Ribeiro Melo
    • 4
  • Guilherme Kangussu Donagemma
    • 2
  1. 1.Urban and Environmental EngineeringPontifical Catholic University of Rio de Janeiro-PUC RioRio de JaneiroBrazil
  2. 2.Brazilian Agricultural Research Corporation-EMBRAPA SoilsRio de JaneiroBrazil
  3. 3.Institute of Biosciences (IBIO)Federal University of Rio de Janeiro State-UNIRioRio de JaneiroBrazil
  4. 4.Department of Mathematics and Statistics Center of Exact Sciences and Technology (CCET)Federal University of Rio de Janeiro State-UNIRioRio de JaneiroBrazil

Personalised recommendations