Advertisement

Quaternary negative tectonic inversion along the Sibillini Mts. thrust zone: the Arquata del Tronto case history (Central Italy)

  • Giuseppe Tortorici
  • Gino Romagnoli
  • Sabrina Grassi
  • Sebastiano Imposa
  • Giuseppe Lombardo
  • Francesco Panzera
  • Stefano Catalano
Original Article
  • 29 Downloads

Abstract

Geological and geophysical investigations have been carried out in the surroundings of the villages of Pretare and Piedilama, in the Central Apennines. This area, located at the footwall of the prominent NNE–SSW oriented Sibillini thrust front, was struck by the August 24th 2016 Mw 6 earthquake. The results of the geological field survey combined with geological and geophysical subsurface investigations are here illustrated by a detailed geological map and by two significant cross-sections. The studied area is crossed by the Fosso di Morricone valley that, entrenched within the Messinian pelitic-arenaceous succession of the Laga formation, hosts a Late Pleistocene palaeo-landslide. The study evidences the occurrence of a N 10° oriented west dipping normal fault, here named Pretare–Piedilama fault, that controlled the left side of the Fosso di Morricone valley, producing a vertical displacement of the palaeo-landslide deposits of about 50 m. The geological, geomorphological and geophysical data indicate that the fault was active during the Late Pleistocene and part of the Holocene thus constraining a minimum vertical displacement-rate of 0.4 mm/a in the last 125 ka. The geometry of the deformed Laga formation cut by the fault suggests to relate it to the Late Quaternary negative tectonic inversion of a previous thrust plane located in the footwall of the Sibillini thrust front. The Pretare–Piedilama fault would represent the easternmost tectonic expression of this main potentially active structure. Future researches could be addressed to detail the age and the actual motion-rate of the structure and to define its seismic hazard assessment.

Keywords

Central-Northern Apennines Amatrice seismic sequence Sibillini thrust front HVSR impedance contrast sections Fold and thrust belt Crustal barrier 

Notes

Acknowledgements

We are grateful to the Editor James W. LaMoreaux and to the anonymous reviewer for constructive review that significantly improved the manuscript. This study was performed in the frame of the seismic microzonation activities, promoted by the Center for Seismic Microzonation and its applications on behalf National Department of Civil Protection. The instruments used in this study for the geophysical surveys belong to the Applied Geophysical Laboratory (Scientific Responsible: S. Imposa) of the Biological, Geological and Environmental Sciences Department—University of Catania.

References

  1. Alberti M (2006) Spatial variations in the similarity of earthquake populations: the case of the 1997 Colfiorito–Sellano (northern Apennines, Italy) seismic sequence. Tectonophysics 421:231–250.  https://doi.org/10.1016/j.tecto.2006.04.015 CrossRefGoogle Scholar
  2. Bagh S, Chiaraluce L, De Gori P, Moretti M, Govoni A, Chiarabba C, Di Bartolomeo P, Romanelli M (2007) Background seismicity in the Central Apennines of Italy: the Abruzzo region case study. Tectonophysics 444:80–92.  https://doi.org/10.1016/j.tecto.2007.08.009 CrossRefGoogle Scholar
  3. Bigi S, Doglioni C, Mariotti G (2002) Thrust vs normal fault decollements in the Central Apennines. Boll Soc Geol Ital 1:161–166Google Scholar
  4. Boccaletti M, Calamita F, Deiana G, Gelati R, Massari F, Moratti G, Ricci Lucchi F (1990) Migrating foredeep-thrust belt system in the Northern Apennines and Southern Alps. Palaeogeogr Palaeoclimatol Palaeoecol 77(1):3–14CrossRefGoogle Scholar
  5. Calamita F, Pizzi A (1994) Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (Central Italy). Mem Soc Geol Ital 48:541–548Google Scholar
  6. Calamita F, Pizzi A, Roscioni M (1992) I “fasci” di faglie recenti ed attive di M. Vettore-M. Bove e di M. Castello-M. Cardosa (Appennino umbro-marchigiano). Studi Geol Camerti Spec 92(1):81–95Google Scholar
  7. Calamita F, Pizzi A, Ridolfi M, Rusciadelli G, Scisciani V (1998) Il buttressing delle faglie sinsedimentarie pre-thrusting nella strutturazione neogenica della catena appenninica: l’esempio della M.gna dei Fiori (Appennino centrale esterno). Boll Soc Geol Ital 118:125–140Google Scholar
  8. Calamita F, Coltorti M, Pieruccini P, Pizzi A (1999) Evoluzione strutturale e morfogenesi plio-quaternaria dell’Appennino umbro-marchigiano tra il preappennino umbro e la costa adriatica. Boll Soc Geol Ital 118:125–139Google Scholar
  9. Calamita F, Pace P, Satolli S (2012) Coexistence of faultpropagation and fault-bend folding in curve-shaped foreland foldand-thrust belts: examples from the Northern Apennines (Italy). Terra Nova 24:396–406.  https://doi.org/10.1111/j.1365-3121.2012.01079.x CrossRefGoogle Scholar
  10. Cantalamessa G, Centamore E, Chiocchini U, Di Lorito L, Leonelli M, Micarelli A, Pesaresi A, Potetti M, Taddei L, Venanzini D (1980) Analisi tettonico-sedimentaria dei «bacini minori» torbiditici del Miocene medio-superiore nell’Appennino umbro-marchigiano e laziale-abruzzese: 9) Il bacino della Laga tra il F. Fiastrone-T. Fiastrella ed il T. Fluvione. Studi Geol Camerti 6:81–133Google Scholar
  11. Catchings RD, Rymer MJ, Goldman MR, Sickler RR, Criley CJ (2014) A method and example of seismically imaging near-surface fault zones in geologically complex areas using VP, VS, and their ratios. Bull Seismol Soc Am 104(4):1989–2006.  https://doi.org/10.1785/0120130294 CrossRefGoogle Scholar
  12. Cavazza W, Roure F, Ziegler PA (2004) The Mediterranean area and the surrounding regions: active processes, remnants of former Tethyan oceans and related thrust belts. In: Cavazza W, Roure F, Spakman W, Stampfl GM, Ziegler PA (eds) The TRANSMED Atlas: the Mediterranean Region from crust to mantle. Springer, Berlin, pp 1–29CrossRefGoogle Scholar
  13. Centamore E, Rossi D (2009) Neogene-quaternary tectonics and sedimentation in the central Apennines. Boll Soc Geol Ital 128(1):73–88Google Scholar
  14. Centamore E, Adamoli L, Berti D, Bigi S, Casnedi R, Cantalamessa G, Fumanti F, Morelli C, Micarelli A, Ridolfi M, Salvucci R, Chiocchini M, Mancinelli A, Potetti M (1992) Carta geologica dei bacini della Laga e del Cellino e dei rilievi carbonatici circostanti (Marche meridionali, Lazio nord-orientale, Abruzzo settentrionale). In: Scala 1:100,000. SELCA, FirenzeGoogle Scholar
  15. Chiaraluce L, Ellsworth WL, Chiarabba C, Cocco M (2003) Imaging the complexity of an active normal fault system: the 1997 Colfiorito (central Italy) case study. J Geophys Res 108(B6):2294.  https://doi.org/10.1029/2002JB002166 CrossRefGoogle Scholar
  16. Chiaraluce L, Di Stefano E, Tinti E, Scognamiglio L, Michele M, Casarotti M, Cattaneo M, De Gori P, Chiarabba C, Monachesi G, Lombardi A, Valoroso L, Latorre D, Marzorati S (2017) The 2016 Central Italy seismic sequence: a first look at the mainshocks, aftershocks, and source models. Seismol Res Lett 88(3):1–15.  https://doi.org/10.1785/0220160221 CrossRefGoogle Scholar
  17. Cooper JC, Burbi L (1986) The geology of the Sibillini mauntains. Mem Soc Geol Ital 35:323–347Google Scholar
  18. Cooper MA, Williams GD (1989) Inversion tectonics. Spec Publ Geol Soc London 44:1–375CrossRefGoogle Scholar
  19. Corrado S, Di Bucci D, Leschiutta I, Naso G, Trigari A (1997) The Quaternary tectonics of the Isernia plain in the structural evolution of Molise. Alp Mediterr Quat 10(2):609–613Google Scholar
  20. Cosentino D, Cipollari P, Marsili P, Scrocca D (2010) Geology of the central Apennines: a regional review. J Virtual Explor.  https://doi.org/10.3809/jvirtex.2009.00223 CrossRefGoogle Scholar
  21. Crema C (1924) Depositi glaciali alle falde orientali del M. Vettore nel gruppo dei Sibillini. Boll Soc Geol Ital 43:36–38Google Scholar
  22. D’Agostino N, Mantenuto S, D’Anastasio E, Avallone A, Barchi M, Collettini C, Radicioni F, Stoppini A, Fastellini G (2009) Contemporary crustal extension in Umbria-Marche Apennines from regional CGPS networks and comparison between geodetic and seismic deformation. Tectonophysics 476:3–12.  https://doi.org/10.1016/j.tecto.2008.09.033 CrossRefGoogle Scholar
  23. D’Agostino N, Mantenuto S, D’Anastasio E, Giuliani R, Mattone M, Calcaterra S, Gambino P, Bonci L (2011) Evidence for localized active extension in the central Apennines (Italy) from global positioning system observations. Geology 39(4):291–294.  https://doi.org/10.1130/G31796.1 CrossRefGoogle Scholar
  24. Devoti R, Esposito A, Pietrantonio G, Pisani AR, Riguzzi F (2011) Evidence of large scale deformation patterns from GPS data in the Italian subduction boundary. Earth Planet Sci Lett 311:230–241.  https://doi.org/10.1016/j.epsl.2011.09.034 CrossRefGoogle Scholar
  25. Di Domenica A, Turtù A, Satolli S, Calamita F (2012) Relationship between thrusts and normal faults in curved belts: new insight in the inversion tectonics of the Central-Northern Apennine (Italy). J Struct Geol 30:1–14.  https://doi.org/10.1016/j.jsg.2012.06.008 CrossRefGoogle Scholar
  26. Di Domenica A, Bonini L, Calamita F, Toscani G, Galuppo C, Seno S (2014) Analogue modeling of positive inversion tectonics along differently oriented pre-thrusting normal faults: an application to the central-northern Apennines of Italy. Geol Soc Am Bull 126(7–8):943–955.  https://doi.org/10.1130/B31001.1 CrossRefGoogle Scholar
  27. Doglioni C (1991) A proposal of kinematic modelling for W-dipping subductions. Possible applications to the Tyrrenian-Apennines system. Terra Nova 3:423–434CrossRefGoogle Scholar
  28. EMERGEO Working Group (2016) The 24 August 2016 Amatrice earthquake: Coseismic Effects.  https://doi.org/10.5281/zenodo.61568
  29. Galadini F, Galli P (2000) Active tectonics in the Central Apennines (Italy)-input data for seismic hazard assessment. Nat Hazards 22:225–270.  https://doi.org/10.1023/A:1008149531980 CrossRefGoogle Scholar
  30. Giraudi C (2015) The Upper Pleistocene deglaciation on the Apennines (Peninsula Italy). Cuad Investig Geogr 41(2):337–358.  https://doi.org/10.18172/cig.2696 CrossRefGoogle Scholar
  31. Giraudi C, Giaccio B (2015) Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. In: Hughes PD, Woodward JC (eds) Quaternary Glaciation in the Mediterranean Mountains. Geol Soc Lond Spec Publ 433(1):161–178.  https://doi.org/10.1144/SP433.1 CrossRefGoogle Scholar
  32. Ibs-Von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89(1):250–259Google Scholar
  33. ISIDe working group (2016) version 1.0.  https://doi.org/10.13127/ISIDe
  34. Imposa S, Coco G, Corrao M (2004) Site effects close to geostructural lineaments in eastern Sicily (Italy). Eng Geol 72:331–341.  https://doi.org/10.1016/j.enggeo.2003.11.002 CrossRefGoogle Scholar
  35. Imposa S, De Guidi G, Grassi S, Scudero S, Barreca G, Patti G, Boso D (2015a) Applying geophysical techniques to investigate a segment of a creeping fault in the urban area of San Gregorio di Catania, southern flank of Mt. Etna (Sicily—Italy). J Appl Geophys 123:153–163.  https://doi.org/10.1016/j.jappgeo.2015.10.008 CrossRefGoogle Scholar
  36. Imposa S, Mele G, Corrao M, Coco G (2015b) Borehole seismic surveys for the mechanical characterization of a calcarenite cliff in the area of Ispica (southern Sicily). Bull Eng Geol Environ 74:971–980.  https://doi.org/10.1007/s10064-014-0683-8 CrossRefGoogle Scholar
  37. Imposa S, Grassi S, De Guidi G, Battaglia F, Lanaia G, Scudero S (2016a) 3D Subsoil Model of the San Biagio ‘Salinelle’ Mud Volcanoes (Belpasso, Sicily) derived from Geophysical Surveys. Surv Geophys 37:1117–1138.  https://doi.org/10.1007/s10712-016-9380-4 CrossRefGoogle Scholar
  38. Imposa S, Motta E, Capilleri P, Imposa G (2016b) HVSR and MASW seismic survey for characterizing the local seismic response: a case study in Catania area (Italy). Metrol Geotech 1:97–102Google Scholar
  39. Imposa S, Grassi S, Fazio F, Rannisi G, Cino P (2017a) Geophysical surveys to study a landslide body (north-eastern Sicily). Nat Hazards 86(2):327–343CrossRefGoogle Scholar
  40. Imposa S, Panzera F, Grassi S, Lombardo G, Catalano S, Romagnoli G, Tortorici G (2017b) Geophysical and Geologic surveys of the areas struck by the August 26th 2016 Central Italy earthquake: the study case of Pretare and Piedilama. J Appl Geophys 145:17–27.  https://doi.org/10.1016/j.jappgeo.2017.07.016 CrossRefGoogle Scholar
  41. ISPRA-CARG (Geological CARtography) Project (2010) Sheet 349 "Gran Sasso d'Italia" Servizio Geologico d’Italia, 1:50,000 scale. http://www.isprambiente.gov.it/Media/carg/
  42. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88(1):228–241Google Scholar
  43. Landa E, Beydoun W, Tarantola A (1989) Reference velocity model estimation from prestack waveforms: coherency optimization by simulated annealing. Geophysics 5:984–990CrossRefGoogle Scholar
  44. Lavecchia G (1985) Il sovrascorrimento dei Monti Sibillini: analisi cinematica e strutturale. Boll Soc Geol Ital 104:161–194Google Scholar
  45. Lavecchia G, Minelli G, Pialli G (1984) L’Appennino Umbro-Marchigiano: tettonica distensiva e ipotesi di sismogenesi. Boll Soc Geol Ital 103:467–476Google Scholar
  46. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian sea and shortening in the Apennines as result of arc migration driven by sinking of the litosphere. Tectonics 5:227–245CrossRefGoogle Scholar
  47. Mariucci MT, Amato A, Montone P (1999) Recent tectonic evolution and present stress in the Northern Apennines (Italy). Tectonics 18(1):108–118.  https://doi.org/10.1029/1998TC900019 CrossRefGoogle Scholar
  48. Mariucci MT, Montone P, Pierdominici S (2010) Present-day stress in the surroundings of 2009 L’Aquila seismic sequence (Italy). Geophys J Int 182(2):1096–1102.  https://doi.org/10.1111/j.1365-246X.2010.04679.x CrossRefGoogle Scholar
  49. Mazzoli S, Pierantoni PP, Borraccini F, Paltrinieri W, Deiana G (2005) Geometry, segmentation pattern and displacement variations along a major Apennine thrust zone, Central Italy. J Struct Geol 27:1940–1953.  https://doi.org/10.1016/j.jsg.2005.06.002 CrossRefGoogle Scholar
  50. Montone P, Mariucci MT, Pondrelli S, Amato A (2004) An improved stress map for Italy and surrounding regions (central Mediterranean). J Geophys Res 109:B10410.  https://doi.org/10.1029/2003JB002703 CrossRefGoogle Scholar
  51. Montone P, Mariucci MT, Pierdominici S (2012) The Italian present-day stress map. Geophys J Int 189:705–716.  https://doi.org/10.1111/j.1365-246X.2012.05391.x CrossRefGoogle Scholar
  52. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR Railw Tech Res Inst 30(1):25–33Google Scholar
  53. Nogoshi M, Igarashi T (1971) On the amplitude characteristic of microtremor (part 2). J Seismol Soc Jpn 24:26–40Google Scholar
  54. Pace P, Calamita F (2014) Push-up inversion structures v. fault-bend reactivation anticlines along oblique thrust ramps: examples from the Apennines fold-and-thrust belt (Italy). J Geol Soc Lond 171:227–238.  https://doi.org/10.1144/jgs2013-053 CrossRefGoogle Scholar
  55. Panzera F, Lombardo G, Monaco C (2016a) New evidence of wavefield polarization on fault zone in the lower NE slope of Mt. Etna. It J Geosci 135 (2):250–260Google Scholar
  56. Panzera F, Sicali S, Lombardo G, Imposa S, Gresta S, D’Amico S (2016b) A microtremor survey to define the gas raising mechanism in mud volcanoes: the case study of Salinelle (Mt Etna, Italy). Environ Earth Sci 75(15):1140  https://doi.org/10.1007/s12665-016-5974-x CrossRefGoogle Scholar
  57. Panzera F, Halldorsson B, Vogfjörð K (2017) Directional effects of tectonic fractures on ground motion site amplification from earthquake and ambient noise data: a case study in South Iceland. Soil Dyn Earthq Eng 97:143–154.  https://doi.org/10.1016/j.soildyn.2017.03.024 CrossRefGoogle Scholar
  58. Pappalardo G, Imposa S, Mineo S, Grassi S (2016) Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (south-eastern Sicily). Ital J Geosci 135:308–323.  https://doi.org/10.3301/IJG.2015.31 CrossRefGoogle Scholar
  59. Pappalardo G, Imposa S, Barbano MS, Grassi S, Mineo S (2018) Study of landslides at the archaeological site of Abakainon necropolis (NE Sicily) by geomorphological and geophysical investigations. Landslides.  https://doi.org/10.1007/s10346-018-0951-y CrossRefGoogle Scholar
  60. Patacca E, Sartori R, Scandone P (1990) Tyrrhenian basin and Apenninic arcs: kinematic relations since late Tortonian times. Mem Soc Geol Ital 45:425–451Google Scholar
  61. Pierantoni PP, Deiana G, Romano A, Paltrinieri W, Borraccini F, Mazzoli S (2005) Geometrie strutturali lungo la thrust zone del fronte montuoso umbro-marchigiano-sabino. Boll Soc Geol Ital 124(2):395–411Google Scholar
  62. Pierantoni PP, Deiana G, Galdenzi S (2013) Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital J Geosci 132(3):497–520.  https://doi.org/10.3301/IJG.2013.08 CrossRefGoogle Scholar
  63. Pizzi A, Galadini F (2009) Pre-existing cross-structures and active fault segmentation in the northern central Apennines (Italy). Tectonophysics 476:304–319.  https://doi.org/10.1016/j.tecto.2009.03.018 CrossRefGoogle Scholar
  64. Pizzi A, Di Domenica A, Gallovic F, Luzi L, Puglia R (2017) Fault segmentation as constraint to the occurrence of the main shocks of the 2016 Central Italy seismic sequence. Tectonics 36(11):2370–2387.  https://doi.org/10.1002/2017TC004652 CrossRefGoogle Scholar
  65. Pullammanappallil SK, Louie JN (1997) A combined first-arrival travel time and reflection coherency optimization approach to velocity estimation. Geophys Res Lett 24(5):511–514CrossRefGoogle Scholar
  66. Ricci Lucchi F (1975) Miocene paleogeography and basin analysis in Periadriatic Apennines. Reprinted from Geology of Italy. P.E.S.L., TripoliGoogle Scholar
  67. Rovida A, Locati M, Camassi R, Lolli B. Gasperini P (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia,  https://doi.org/10.6092/INGV.IT-CPTI15
  68. Scisciani V (2009) Styles of positive inversion tectonics in the Central Apennines and in the Adriatic foreland: implications for the evolution of the Apennine chain (Italy). J Struct Geol 31:1276–1294.  https://doi.org/10.1016/j.jsg.2009.02.004 CrossRefGoogle Scholar
  69. Scisciani V, Tavarnelli E, Calamita F (2002) The interaction of extensional and contractional deformations in the outer zones of the central Apennines, Italy. J Struct Geol 24:1647–1658CrossRefGoogle Scholar
  70. Scisciani V, Agostini S, Calamita F, Pace P, Cilli A, Giori I. Paltrinieri W (2014) Positive inversion tectonics in foreland fold-and-thrust belts: a reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics 637:218–237.  https://doi.org/10.1016/j.tecto.2014.10.010 CrossRefGoogle Scholar
  71. Serpelloni E, Anzidei M, Baldi P, Casula G, Galvani A (2005) Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS networks. Geophys J Int 161(3):861–880.  https://doi.org/10.1111/j.1365-246X.2005.02618.x CrossRefGoogle Scholar
  72. SESAME (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. SESAME European Research Project WP12, deliverable D23.12. http://sesame-fp5.obs.ujf-grenoble.fr/Deliverables2004
  73. Tagliaferro MC (1982) Lembo morenico presso Arquata del Tronto. Bollettino della Società geologica italiana 101(2):211–218Google Scholar
  74. Tavarnelli E (1996) Controllo delle faglie dirette giurassiche e cretacico-paleogeniche sullo sviluppo dei sovrascorrimenti neogenici nell’Appennino umbro-marchigiano. Studi Geol Camerti Spec 1995(1):601–610Google Scholar
  75. Tavarnelli E, Butler RWH, Decandia FA, Calamita F, Grasso M, Alvarez W, Renda P (2004) Implications of fault reactivation and structural inheritance in the Cenozoic tectonic evolution of Italy. IGC 32 Boll Soc Geol Ital Special Volume:209–222Google Scholar
  76. Vezzani L, Festa A, Ghisetti F (2010) Geology and tectonic evolution of the Central-Southern Apennines, Italy. Geol Soc Am Spec Pap 469:1–58.  https://doi.org/10.1130/2010.2469 CrossRefGoogle Scholar
  77. Villani F, D’Amico S, Panzera F, Vassallo M, Bozionelos G, Farrugia D, Galea P (2018) Shallow geophysical investigation along the western segment of the Victoria Lines Fault (island of Malta). Tectonophysics 724–725:220–233.  https://doi.org/10.1016/j.tecto.2018.01.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della TerraUniversità di CataniaCataniaItaly
  2. 2.Center for Seismic Microzonation and its ApplicationsRomeItaly
  3. 3.Consiglio Nazionale delle Ricerche, Istituto di Geologia Ambientale e GeoingeneriaRomeItaly
  4. 4.Swiss Seismological ServiceETH ZürichZurichSwitzerland

Personalised recommendations