Advertisement

Patagonian salt marsh soils and oxidizable pedogenic pyrite: solid phases controlling aluminum and iron contents in acidic soil solutions

  • Pablo José BouzaEmail author
  • Ileana Ríos
  • Yanina Lorena Idaszkin
  • Alejandro Bortolus
Thematic Issue
  • 58 Downloads

Abstract

The sulfidic materials present in salt marshes could be oxidized forming sulfuric acid, increasing the toxic levels of both Al and Fe available to plants. The objectives of this study were: (a) to evaluate the mechanism of acid generation from the oxidation of sulfidic materials, and (b) to predict solid phases governing the dissolved Fe and Al concentrations in soils at low pH. The study was conducted in 14 soil profiles associated to eight salt marshes situated along the Atlantic coast of Patagonia. The potential acidity was estimated by the peroxide-oxidizable sulfuric acidity method (POSA). To predict the availability of Fe and Al at low pH, the solid phase equilibrium that governs the solubility of these elements through ion activity of the products was determined. The scanning electron microscopy analysis in sulfidic materials reveals the occurrence of framboidal pyrite. The relative variability of POSA at low pH values may indicate retention of sulfates by Al and Fe hydroxides, producing the formation of basic sulfates of iron and aluminum. At pH > 5.5, Fe2+ and Al3+ activities show an equilibrium with amorphous oxy-hydroxides of Fe(OH)3 and gibbsite, respectively. As the pH begins to decline below 5.5, Fe2+ and Al3+ activities show an equilibrium with respect to soil–Fe(OH)3 and Al(OH)3 amorphous, respectively. While for more acidic conditions, the solid phase in predicting both Fe2+ and Al3+ activities was basic iron sulfate and jurbanite. The acidic soil solutions with pH < 3, Fe2+ and SO42− activities show an equilibrium with goethite and melanterite, respectively. As a consequence of acid generation, phosphorus adsorption by aluminum and iron oxide minerals was detected.

Keywords

Pyrite framboids Sulfidic materials Potential acid sulfate soils Tidal salt marsh Solid phase equilibrium 

Notes

Acknowledgements

The authors thank Claudia Saín Estela Cortés and Fernando Coronato for their exceptional assistance in laboratory and fieldwork. This research has been funded by the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina (CONICET, PIP 2014 00190 CO) and Global Environment Fund (GEF- PNUD ARG 02/018 A-B17). The authors are thankful to the comments received from anonymous reviewers and for their suggestions for improving this manuscript.

References

  1. Adam P (1990) Salt marsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Ahern CR, Ahern MR, Powell B (1998) Guidelines for sampling and analysis of lowland acid sulfate soils (ASS) in Queensland 1998. QASSIT, Department of Natural Resources, Resource Sciences Centre, Indooroopilly, 34 ppGoogle Scholar
  3. Ahern CR, McElnea AE, Sullivan LA (2004) Acid sulfate soils laboratory methods guidelines. Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, QueenslandGoogle Scholar
  4. Allen JRL (2000) Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quatern Sci Rev 19:1155–1231CrossRefGoogle Scholar
  5. Alsemgeest G, Dale P, Alsemgeest D (2005) Evaluating the risk of potential acid sulfate soils and habitat modification for mosquito control (runneling) in coastal salt marshes: comparing methods and managing the risk. Environ Manage 36(1):152–216 (Australia) CrossRefGoogle Scholar
  6. Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim 48:605–615CrossRefGoogle Scholar
  7. Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. Rev Miner Geochem 40(1):351–403CrossRefGoogle Scholar
  8. Bortolus A, Schwindt E (2007) What would have Darwin written now? Biodivers Conserv 16:337–345CrossRefGoogle Scholar
  9. Bortolus A, Schwindt E, Bouza PJ, Idaszkin YL (2009) A characterization of Patagonian salt marshes. Wetlands 29:772–780CrossRefGoogle Scholar
  10. Bouza PJ, Sain C, Bortolus A, Ríos I, Idaszkin Y, Cortés E (2008) Geomorfología y Características morfológicas y fisicoquímicas de suelos hidromórficos de marismas patagónicas. XXI Argentinian Soil Science Congress. Extended abstract. Potrero de los Funes, San Luis, Argentina, p 450Google Scholar
  11. Codignotto JO, Kokot RR, Marcomini SC (1993) Desplazamientos verticales y horizontales de la costa Argentina en el Holoceno. Rev Asoc Geol Argent 48(2):125–132Google Scholar
  12. DeLaune RD, Reddy CN, Patrick WH (1981) Accumulation of plant nutrients and heavy metals through sedimentation processes and accretion in a Louisiana salt marsh. Estuaries 4:328–334CrossRefGoogle Scholar
  13. Dent D (1986) Acid sulphate soils: a baseline for research and development. International Institute for Land Reclamation and Improvement Publication No. 39, WageningenGoogle Scholar
  14. DeFlaun MF, Mayer LM (1983) Relationships between bacteria and grain surfaces in intertidal sediments. Limnol Oceanogr 28(5):873–881CrossRefGoogle Scholar
  15. Devasahayam S (2006) Chemistry of acid production in black coal mine washery wastes. Int J Miner Process 79:1–8CrossRefGoogle Scholar
  16. Fitzpatrick R, Shand P (2008) Inland acid sulfate soils: overview and conceptual models. In Fitzpatrick R, Shand P (eds) Inland acid sulfate soil systems across Australia, CRC LEME Open File Report No. 249 (Thematic Volume) CRC LEME, Perth pp 6–74Google Scholar
  17. Fortin D, Goulet R, Roy M (2000) Seasonal cycling of Fe and S in a constructed wetland: the role of sulfate-reducing bacteria. Geomicrobiol J 17(3):221–235CrossRefGoogle Scholar
  18. Goldberg S, Sposito G (1984) A chemical model of phosphate adsorption by soils: II. Non calcareous soils. Soil Sci Soc Am J 48:779–783CrossRefGoogle Scholar
  19. Griffin RA, Jurinak JJ (1973) Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soil extracts. Soil Sci 116(1):26–30CrossRefGoogle Scholar
  20. Haynes RJ (2014) Nature of the belowground ecosystem and Its development during pedogénesis. In: Sparks D (ed) Advances in agronomy, vol 127. Elsevier, Cambridge, pp 43–103Google Scholar
  21. Lin C, Melville MD (1993) Control of soil acidification by fluvial sedimentation in an estuarine floodplain, eastern Australia. Sed Geol 85:271–284CrossRefGoogle Scholar
  22. Lin C, Melville MD (1994) Acid sulphate soil–landscape relationships in Pearl River Delta, southern China. Catena 22:105–120CrossRefGoogle Scholar
  23. Lin C, Melville MD, Hafer S (1995) Acid sulphate soil–landscape relationships in an undrained, tide-dominated estuarine floodplain, Eastern Australia. Catena 24:177–194CrossRefGoogle Scholar
  24. Lin C, Melville MD, White I, Hsu YP (1996) Comparison of three methods for estimation of the reduced-S content in estuarine sediments. Sci Total Environ 87:1–9CrossRefGoogle Scholar
  25. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, 472 ppGoogle Scholar
  26. Ludwig B, Prenzel J, Obermann P (2001) Modelling ion composition in seepage water from a column experiment with an open cut coal mine sediment. J Geochem Explor 73:87–95CrossRefGoogle Scholar
  27. Luque T, De Arambarri P (1983) Dinámica del fósforo en los suelos de las marismas del río Guadalquivir. Anal Edafol Agrobiol 42:1723–1735Google Scholar
  28. Luther GW, Giblin A, Ryans RA (1982) Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments. Geochim Cosmochim 46:2665–2669CrossRefGoogle Scholar
  29. Merinero R, Lunar R, Martínez-Frías J, Somoza L, Díaz-del-Río V (2008) Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Mar Pet Geol 25:706–713CrossRefGoogle Scholar
  30. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New YorkGoogle Scholar
  31. Nie M, Wang M, Li B (2009) Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecol Eng 35:1804–1808CrossRefGoogle Scholar
  32. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulfate weathering. Soil Science Society of America, Madison, pp 37–56Google Scholar
  33. Osterrieth M, Borrelli N, Alvarez MF, Nóbrega GN, Machado W. Ferreira TO (2016) Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environ Earth Sci 75:672CrossRefGoogle Scholar
  34. Otero XL, Macías F (2001) Caracterización y clasificación de suelos de las marismas de la ría de Ortigueira en relación con su posición fisiográfica y vegetación (Galicia-NO de la Península Ibérica). Edafología 8(3):37–61Google Scholar
  35. Reddy KJ, Wang L, Gloss SP (1995) Potential solid phases controlling dissolved aluminium and iron concentration in acidic soils. In: Date RA et al (eds) Plant and soil interaction at Low pH. Kluwer Academic Publishers, The Netherlands, pp 35–40CrossRefGoogle Scholar
  36. Ríos I (2015) Relaciones edafo-geomorfológicas y geo-ecología de plantas vasculares en marismas patagónicas: propiedades morfológicas, físicas, químicas y biogeoquímicas. Doctoral Thesis, Universidad Nacional de Córdoba, Córdoba, Argentina, p 170Google Scholar
  37. Sawlowicz Z (1993) Pyrite framboids and their development: a new conceptual mechanism. Geol Rundsch 82:148–156CrossRefGoogle Scholar
  38. Sawlowicz Z (2000) Framboids: from their origin to application. Pr Mineral 88:1–80Google Scholar
  39. Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, LincolnGoogle Scholar
  40. Schwertmann U, Friedl J, Stanjek H, Schulze DG (2000) The effect of Al on Fe oxides. XIX. Formation of Al-substituted hematite from ferrihydrite at 25 °C and pH 4 to 7. Clays Clay Miner 48(2):159–172CrossRefGoogle Scholar
  41. SHN (2018) Servicio de Hidrografía Naval Argentina. http://www.hidro.gov.ar/oceanografia/Tmareas/Form_TPSMareas.asp. Accessed 5 May 2018
  42. Simón M, Martín F, García I, Bouza P, Dorronsoro C, Aguilar J (2005) Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings. Environ Pollut 135:65–72CrossRefGoogle Scholar
  43. Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys; 2nd edition. Agricultural Handbook 436. Natural Resources Conservation Service, USDA, Washington, p 869Google Scholar
  44. Soriano A (1983) Deserts and semi-deserts of Patagonia. In: West NE (ed) Temperate deserts and semi-deserts. Elsevier, Amsterdam, pp 423–460Google Scholar
  45. Sposito G (1989) The chemistry of soils. Oxford University Press, New York, 277 ppGoogle Scholar
  46. Sposito G, Skipper NT, Sutton R, Park S, Soper AK, Greathouse JA (1999) Surface geochemistry of the clay minerals. Proc Natl Acad Sci USA 96(7):3358–3364CrossRefGoogle Scholar
  47. Stevenson FJ (1994) Humus chemistry. genesis, composition, reactions. Wiley, New YorkGoogle Scholar
  48. Sullivan P, Yelton J, Reddy KJ (1988a) Solubility relationships of aluminum and iron minerals associated with acid mine drainage. Environ Geol Water Sci 11(3):283–287CrossRefGoogle Scholar
  49. Sullivan P, Yelton J, Reddy KJ (1988b) Iron sulfide oxidation and the chemistry of acid generation. Environ Geol Water Sci 11(3):289–295CrossRefGoogle Scholar
  50. Sullivan LA, Bush RT, McConchie D, Lancaster D, Haskins PG, Clark MW (1999) Comparison of peroxide-oxidisable sulfur and chromium-reducible sulfur methods for determination of reduced inorganic sulfur in soil. Aust J Soil Res 37:255–265CrossRefGoogle Scholar
  51. Theodose TA, Roths JB (1999) Variation in nutrient availability and plant species diversity across forb and graminoid zones of a Northern New England high salt marsh. Plant Ecol 143:219–228CrossRefGoogle Scholar
  52. UNEP (1997) United Nations Environment Programme. World atlas of desertification 2nd edition. London, p 182Google Scholar
  53. US Salinity Laboratory Staff (1954) Diagnosis and Improvement of Saline and Alkali Soils, Handbook 60. US Department of Agriculture, Washington, DC, p 160Google Scholar
  54. Van Breemen N (1973) Dissolved aluminum in acid sulfate soils and n mine waters. Soil Sci Soc Am Proc 37:694–697CrossRefGoogle Scholar
  55. Van Breemen N (1982) Genesis, morphology and classification of acid sulphate soils in coastal plains. In: Kittrick JA, Fanning DS, Hossner LR (eds) Acid sulphate weathering. Special Publication No. 10. Soil Science Society of America, Madison, pp 95–108Google Scholar
  56. Vepraskas MJ, Faulkner SP (2001) Redox chemistry of hydric soils. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes, and classification. Lewis Publishers, Washington, D.C, pp 85–105Google Scholar
  57. Vepraskas MJ, Wildings LP, Dress LR (1994) Aquic conditions for soil taxonomy: concepts, soil morphology and micromorphology. In: Ringrose-Voace, Humphreys GS (ed) Soil micromorphology: studies in management and genesis, development in soil science 22. Elsevier, Amsterdam, pp 117–131Google Scholar
  58. White I, Melville MD, Wilson BP, Sammut J (1997) Reducing acidic discharges from coastal wetlands in eastern Australia. Wetlands Ecol Manag 5:55–72CrossRefGoogle Scholar
  59. Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim 60:3897–3912CrossRefGoogle Scholar
  60. Xiao R, Bai J, Gao H, Huang L, Deng W (2012) Spatial distribution of phosphorus in marsh soils of a typical land/inland water ecotone along a hydrological gradient. Catena 98:96–103CrossRefGoogle Scholar
  61. Yagui R, Ferreira ME, Pessôa da Cruz MC, Barbosa JC (2003) Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci Agric 60(3):549–557CrossRefGoogle Scholar
  62. Zhang YL, Evangelou VP (1996) Influence of iron oxide forming conditions on pyrite oxidation. Soil Sci 161:852–864CrossRefGoogle Scholar
  63. Zhang YL, Evangelou VP (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Sci 163:53–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC)Centro Nacional Patagónico, CONICETPuerto MadrynArgentina
  2. 2.Universidad Nacional de la Patagonia San Juan BoscoPuerto MadrynArgentina
  3. 3.Grupo de Ecología en Ambientes Costeros (GEAC IPEEC-CONICET)ChubutArgentina

Personalised recommendations