Advertisement

Environmental Earth Sciences

, 77:801 | Cite as

Rare earth elements absorption patterns in grapevine “Vitis vinifera L.” cultivated in carbonate terrains (south-eastern Sicily, Italy)

  • Rosalda PunturoEmail author
  • Carmelisa D’Antone
  • Salvatore Pepi
  • Carmela Vaccaro
Original Article
  • 65 Downloads

Abstract

Vitis vinifera L. vineyards grown on carbonate soil (Hyblean Plateau, SE Sicily) have been characterized in terms of rare earth elements (REEs) distribution. Results highlighted that the absorption of REEs by plants depends on the composition of the underlying soil, which in this case derives from limestone parent rock, allowing us to recognize the area of origin. Indeed, even slight differences in REEs content in soils may affect the absorption pattern of each grapevine cultivar. Importantly, the various parts of the plants showed differences in REEs absorption; such REEs fractionation is particularly evident in the leaf and juice samples. In general, the uptake and concentrations of REEs in plant tissues may be related to many factors such as geographical, climatic and lithological features. This is also pointed out by the statistical investigation, which took into account either the grapevine variety or each part of the plant. By taking into consideration both the grape variety and the type of soil, the present “multi-elemental” approach aims to provide a useful geochemical tool for assessing the geographical origin of the production area of wine.

Keywords

Rare earth elements distribution Vitis vinifera L. Statistical analysis Geographical origin Geochemical fingerprint 

Notes

Acknowledgements

The authors acknowledge the Italian Ministry of Education, University and Research (MIUR) under the “fondo Giovani” for financial support. José Marcos Jurado Jurado, of the Department of Analytical Chemistry (University of Sevilla), is gratefully acknowledged for his precious help during the statistical computation. Editorial management by Olaf Kolditz is appreciated. Constructive revisions by three anonymous reviewers are acknowledged. The authors are also grateful to Dr. Renzo Tassinari and to Umberto Tessari (University of Ferrara) for their help in analytical facilities. Finally, the authors wish to thank the winery owners, Demostene family (Giuseppe and Maria Stella) and Giovanni Calcaterra (Avide winery) together with Gianbattista Cilia, Cirino Strano e Giusto Occhipinti (COS winery). The staff of Cos and Avide wineries are also acknowledged for their valuable support during cultivars’ sampling. The research work was coordinated by Rosalda Punturo and by Carmela Vaccaro; it is part of Carmelisa D’Antone’s Ph.D. thesis; Salvatore Pepi contributed to data interpretation and statistical management of results.

References

  1. Aceto C, Robotti E, Oddone M, Baldizzone M, Bonifacino G, Bezzo G, Di Stefano R, Gosetti F, Mazzucco E, Manfredi M, Marengo E (2013) A traceability study on the Moscato wine chain. Food Chem 138:1914–1922CrossRefGoogle Scholar
  2. Alfaro MR, Nascimento CWAD, Biondi CM, Silva YJABD, Silva YJABD, Accioly AMDA, Estevez J (2018) Rare-earth-element geochemistry in soils developed in different geological settings of cuba. Catena 162:317–324CrossRefGoogle Scholar
  3. Angerosa F, Breas O, Contento S, Guillou C, Reniero F, Sada EJ (1999) Application of stable isotope ratio analysis to the characterization of the geographical origin of the olive oils. J Agric Food Chem 47:1013–1017CrossRefGoogle Scholar
  4. Arroyo-Garcìa RRG (2006) Multiple origins of cultivated grapevine (Vitis Vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714CrossRefGoogle Scholar
  5. Bandoniene D, Zetti D, Meisel T, Maneiko M (2013) Suitability of elemental fingerprinting for assessing the geographic origin of pumpkin (Cucurbita pepo var. styriaca) seed oil. Food Chem 136:1533–1542CrossRefGoogle Scholar
  6. Beccaluva L, Siena F, Coltorti M, Di Grande A, Lo Giudice A, Macciotta G, Tassinari R, Vaccaro C (1998) Nephelinitic to Tholeiitic Magma generation in a transtensional tectonic setting: an integrated model for the Iblean Volcanism, Sicily. J. Petrol. 39:130 Google Scholar
  7. Bertoldi D, Larcher R, Nicolini G, Bertamini M, Concheri G (2009) Distribution of rare earth elements in Vitis vinifera L. ‘chardonnay’ berries. Vitis 48(1):49–51Google Scholar
  8. Bianchini G, Clocchiatti R, Coltorti M, Joron JL, Vaccaro C (1998) Petrogenesis of mafic lavas from the northernmost sector of the Iblean district (Sicily). Eur J Miner 10:301–315CrossRefGoogle Scholar
  9. Brancato A, Hole JA, Gresta S, Beale JN (2009) Determination of seismogenic structures in Southeastern Sicily (Italy) by high-precision relative relocation of microearthquakes. Bull Seismol Soc Am 99:1921–1936CrossRefGoogle Scholar
  10. Capron X, Smeyers-Verbeke J, Massart DL (2007) Multivariate determination of the geographical origin of wines from four different countries. Food Chem 101:1585–1597CrossRefGoogle Scholar
  11. Carimi FM (2010) Microsatellite analyses for evaluation of genetic diversity among Sicilian grapevine cultivars. Genet Resour Crop Evol 57:703–719CrossRefGoogle Scholar
  12. Castiñeira Gomez MDM, Brandt R, Jakubowski N, Anderson JT (2004) Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by Inductively Coupled Plasma-Mass Spectrometry. J Agric Food Chem 52(10):2953–2961CrossRefGoogle Scholar
  13. Catalano RF (2000) A crustal section from the Eastern-Algerian basin to the Ionian ocean (Central Mediterranean). Memorie della Società. Geol Ital 55:71–86Google Scholar
  14. Catalano R, Di Stefano P, Sulli A, Vitale FP (1996) Paleogeography and structure of the central mediterranean: Sicily and its offshore area. Tectonophysics 260(4):291–323CrossRefGoogle Scholar
  15. Catalano S, De Guidi G, Lanzafame G, Monaco C, Torrisi S, Tortorici G, Tortorici L (2006) Inversione tettonica positiva tardo-quaternaria nel Plateau Ibleo (Sicilia SE). Rend Soc Geol Ital 2: 118–120Google Scholar
  16. Catalano S, Torrisi S, Tortorici G, Romagnoli G (2011) Active folding along a rift-flank: the Catania region case history (SE Sicily). J Geodyn 51:53–63CrossRefGoogle Scholar
  17. Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia AS, De Sousa RB (2008) Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem 56(1):158–165CrossRefGoogle Scholar
  18. Censi P, Mazzola S, Sprovieri M, Bonanno A, Patti B, Punturo R, Alonzo G (2004) Rare earth elements distribution in seawater and suspended particulate of the central mediterranean sea. Chem Ecol 20(5):323–343CrossRefGoogle Scholar
  19. Censi P, Spoto SE, Nardone G, Saiano F, Punturo R, Di Geronimo SI, Ottonello D (2005) Rare-earth elements and yttrium distributions in mangrove coastal water systems: the western gulf of thailand. Chem Ecol 21(4):255–277CrossRefGoogle Scholar
  20. Censi P, Zuddas P, Randazzo LA, Saiano F, Mazzola S, Aricò P, Punturo R (2010) Influence of dissolved organic matter on rare earth elements and yttrium distributions in coastal waters. Chem Ecol 26(2):123–135CrossRefGoogle Scholar
  21. Censi P, Saiano F, Pisciotta A, Tuzzolino N (2014) Geochemical behaviour of Rare Earth in “Vitis vinifera” grafted onto different rootstocks and growing on several soils. Sci Total Environ 473–474:597–608CrossRefGoogle Scholar
  22. Chen J, Yang R (2010) Analysis on REE geochemical characteristics of three types of REE-rich soil in Guizhou Province, China. J Rare Earth 28:517–522CrossRefGoogle Scholar
  23. Choi SM, Lee HS, Lee GH, Han JK (2008) Determination of the strontium isotope ratio by ICP-MS Ginseng as a tracer of regional origin. Food chem 108:1149–1154CrossRefGoogle Scholar
  24. Christoph N, Baratossy G, Kubanovic V, Kozina B, Rossmann A, Schlicht C (2004) Possibilities and limitations of wine authentication using stable isotope ratio analysis and traceability. Part 2; wines from Hungary, Croatia and other European countries. Mitteihagen Klosrerneunerg 54:155–169Google Scholar
  25. Ciotoli G, Finoia MG (2005) Dalla Statistica alla Geostatistica, Introduzione all’analisi dei dati geologici ambientali, ARACNE, RomaGoogle Scholar
  26. Cirrincione R, Fazio E, Fiannacca P, Ortolano G, Pezzino A, Punturo R (2015) The Calabria–Peloritani Orogen, a composite terrane in central mediterranean; its overall architecture and geodynamic significance for a pre-Alpine scenario around the tethyan basin. Period Minerol, 84(3B)  https://doi.org/10.2451/2015PM0446
  27. Cita MB (2003) Geologia dei Vini Italiani, Italia Meridionale e Insulare Vol, 2. BE-MA, MilanoGoogle Scholar
  28. D’Antone C (2016) Absorption of rare earth elements in grapevine of volcanic and carbonate soil. Unpublished Ph.D. Thesis, University of Ferrara, 182 ppGoogle Scholar
  29. D’Antone C, Punturo R, Vaccaro C (2017) Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy). Environ Monit Assess 189:160CrossRefGoogle Scholar
  30. Dangl GS (2001) Simple sequence repeat analysis of a clonally propagated species: a tool for managing a grape germplasm collection. Genome 44:432–438CrossRefGoogle Scholar
  31. Drivelos SA, Higgins K, Kalivas JH, Haroutounian SA, Georgiou CA (2014) Data fusion for food authentication. Combining rare earth elements and trace metals to discriminate “Fava Santorinis"from other yellow split peas using chemometric tools. Food Chem 165:316–322CrossRefGoogle Scholar
  32. Esteban-Diez I, Gonzalez Saiz JM, Saenz Gonzalez C, Pizarro C (2007) Coffee varietal differentiation based on near infrared spectroscopy. Talanta 71:221–229CrossRefGoogle Scholar
  33. European Environment Agency data (2014). https://www.eea.europa.eu/publications/92-9167-056-1/page003.html. Accessed 2014
  34. Fisher RA (1936) The use of multiple measurement in taxonomic problems. Ann Eugen 7:179CrossRefGoogle Scholar
  35. Grasso M, Pedley HM, Maniscalco R, Ruggieri R (2000) Carta Geologica del settore Centro Meridionale dell’altopiano Ibleo provincia di Ragusa, Sicilia sud-orientale. Memorie della Società Geologica Italiana Catania 55:45–52Google Scholar
  36. Gremaud G, Quaile S, Piantini U, Pfammatter E, Corvi C (2004) Characterization of Swiss vineyards using isotopic data in combination with trace elements and classical parameters. Eur Food Res Technol 219(1):97–104CrossRefGoogle Scholar
  37. Haley BA, Klinkhammer GP, McManus J (2004) Rare earth elements in pore waters of marine sediments. Geochim Cosmochim Acta 68(6):1265–1279.  https://doi.org/10.1016/j.gca.2003.09.012 CrossRefGoogle Scholar
  38. Joebstl D, Bandoniene D, Meisel T, Chatzistathis S (2010) Identification of the geographical origin of pumpkin seed oil by the use of rare earth elements and discriminant analysis. Food Chem 123:1303–1309CrossRefGoogle Scholar
  39. Kelly S, Heaton K, Hoogewerff J (2005) Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trend Food Sci Technol 16:555–567CrossRefGoogle Scholar
  40. Khoury CK, Bjorkaman AD, Dempewolf A, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg L, Struik H PC (2014) Increasing homogeneity in global food supplies and the implications for food security. PNAS 111(11): 4001–4006CrossRefGoogle Scholar
  41. Kim J, Juong Y, Song B, Bong YS, Ryu DH, Lee KS, Hwng GS (2013) Discrimination of cabbage (Brassica rapa ssp. Pekinensis) cultivar grown in different geographical areas using HNMR_based Metabolomics. Food chem 137:68–75CrossRefGoogle Scholar
  42. Lavine Barry K (2015) Clustering and classification of analytical data encyclopedia of analytical chemistry. Wiley, New YorkGoogle Scholar
  43. Lentini FD (1984) Carta geologica della Sicilia sud. orientale map scale 1:100,000. S.E.L.C.A. ed, FlorenceGoogle Scholar
  44. Lima e, Cunha MC, Nardi LVS, Muller IF (2012) Biogeochemistry of REE elements and tetrad effect in the soil-plant system: a study on volcanic rock covers in southernmost brazil. Anais Da Academia Brasileira De Ciencias 84(4):911–918.  https://doi.org/10.1590/S0001-37652012005000069 CrossRefGoogle Scholar
  45. Loges A, Wagner T, Barth M, Bau M, Göb S, Markl G (2012) Negative ce anomalies in mn oxides: the role of Ce4 + mobility during water-mineral interaction. Geochim Cosmochim Acta 86:296–317.  https://doi.org/10.1016/j.gca.2012.03.017 CrossRefGoogle Scholar
  46. Marchionni S, Buccianti A, Bollati A, Braschi E, Cifelli F, Molin P, Parotto M, Mattei M, Tommasini S, Conticelli S (2016) Conservation of 87Sr/86Sr isotopic ratios during the winemaking processes of ‘Red’ wines to validate their use as geographic tracer. Food Chem 190:777–785CrossRefGoogle Scholar
  47. Marini F, Bucci R, Magrì AI, Magrì AD (2006) Authentication of Italian CDO wines by class-modelling techniques. Chemom Intell Lab Syst 84:164–171CrossRefGoogle Scholar
  48. Masuda A, Nagasawa S (1975) Rock with negative cerium anomalies dredged from Shatsky Rise. Geochem J 9:227–232CrossRefGoogle Scholar
  49. Monaco C, Tortorici L (2000) Active faulting in the Calabrian Arc and Eastern Sicily. J Geodyn 29:407–429CrossRefGoogle Scholar
  50. Neri M, Rivalta E, Maccaferri F, Acocella V, Cirrincione R (2018) Etnean and Hyblean volcanism shifted away from the Malta Escarpment by crustal stresses. Earth Planet Sci Lett 486:15–22CrossRefGoogle Scholar
  51. Nicolini G, Larcher R, Pangrazzi P, Bontempo L (2004) Changes in the contents of micro_and trace-elements in wine due to winemaking treatments. Vitis 43(1): 41–45Google Scholar
  52. Nicolosi E, Continella A, Gentile A, Cicala A, Ferlito F (2012) Influence of early leaf removal on autochthonous and international grapevines in Sicily. Sci Hortic 146:1–6CrossRefGoogle Scholar
  53. Oosterveer P, Sonnenfeld A (2012) Food, globalization and sustainability. Earthscan from Routhledge, LondonGoogle Scholar
  54. Pepi S, Vaccaro C (2017) Geochemical fingerprints of “Prosecco” wine based on major and trace elements. Environ Geochem Health 40:833–847CrossRefGoogle Scholar
  55. Pepi S, Coletta A, Crupi P, Leis M, Russo S, Sansone L, Tassinari R, Chicca M, Vaccaro C (2016a) Geochemical characterization of elements in Vitis Vinifera cv. Negroamaro grape berries grown under different soil managements. Environ Monit Assess 188:211CrossRefGoogle Scholar
  56. Pepi S, Sansone L, Chicca M, Marrocchino E, Vaccaro C (2016b) Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environ Monit Assess 188:477CrossRefGoogle Scholar
  57. Pepi S, Sansone L, Chicca M, Vaccaro C (2017a) Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. “Glera”. Chemie der Erde Geochem 77:121–130CrossRefGoogle Scholar
  58. Pepi S, Grisenti P, Sansone L, Chicca M, Vaccaro C (2017b) Chemical elements as fingerprints of geographical origin in cultivars of Vitis vinifera L. raised on the same SO4 rootstock. Environ Sci Pollut Res 25:490–506CrossRefGoogle Scholar
  59. Pirrone NF (2003) Dynamic processes of mercury over the Mediterranean region: results from the Mediterranean atmospheric mercury cycles system (MAMCS) project. Atmos Environ 37:S21–S39CrossRefGoogle Scholar
  60. Poni S, Casalini L, Bernizzoni F, Civardi S, Intrieri C (2006) Effects of early defoliation on shoot photosynthesis, yield components, and grape composition. Am J Enol Vitic 57(4):397–407Google Scholar
  61. Punturo R (2012) Contribution to a possible reconstruction of the Hyblean lithospheric column on the basis of deep-seated xenoliths from Miocene tuff breccias. Rendiconti Online Societa Geologica Italiana 21(PART 1):144–145Google Scholar
  62. Punturo R, Kern H, Scribano V, Atzori P (2000) Petrophysical an petrological characteristics of deep-seated xenoliths from Hyblean Plateau, south-eastern Sicily, Italy: suggestion for a lithospheric model. Miner Petrogr Acta 45:1–20Google Scholar
  63. Punturo R, Sturiale G, Vaccaro C, Cirrincione R, Mustica A (2013) Integrated geological and petrographic study supporting the interpretation of ancient artefacts: the case history of palagonia area (SE Sicily). Ital J Geosci 132(2):263–273.  https://doi.org/10.3301/IJG.2012.36 CrossRefGoogle Scholar
  64. Rao RC (1948) The utilization of multiple measurement in problem of biological classification. J R Stat Soc Biol 10:159–203Google Scholar
  65. Rocchi S, Longaretti G, Salvadori M (1998) Subsurface Mesozoic and Cenozoic magmatism in south–eastern Sicily: distribution, volume and geochemistry magmas. Acta Vulcanol 10:395–408Google Scholar
  66. Rudnick RL, Gao S (2003) Composition of the continental crust. In Rudnick RL, The Crust, Vol. 3, Elsevier, New YorkGoogle Scholar
  67. Sarabia LA, Ortiz MC, Sagrario Sanchez M (2009) D-optimal design used to optimize a multi-response class-modelling method. Chemom Intell Lab Syst 95:138–143CrossRefGoogle Scholar
  68. Scarascia SC (2000) A seismic and gravimetric model of crustal structures across the Sicily Channel Rift Zone. Bollettino della Società Geologica Italiana 19:213–222Google Scholar
  69. Scribano V, Sapienza G, Braga R, Morten L (2006) Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: insights into the nature and composition of the lower crust underneath south-eastern Sicily. Italy Miner Petrol 86:63–88CrossRefGoogle Scholar
  70. Snoussi H, Harbi Ben Slimane M, Ruiz-Garcia L, Martinez-Zapater JM, Arroyo-García R (2004) Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genome 47:1211–1219CrossRefGoogle Scholar
  71. Weib CH (2007) StatSoft, Inc., Tulsa, OK:Statistica, Version 8, AStA 91, 339 341Google Scholar
  72. Zhang ZY (2001) Speciation of rare earth elements in soil and accumulation by wheat. Environ Pollut 112:395–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rosalda Punturo
    • 1
    Email author
  • Carmelisa D’Antone
    • 1
    • 2
  • Salvatore Pepi
    • 2
  • Carmela Vaccaro
    • 2
  1. 1.Department of Biological, Geological and Environmental SciencesUniversity of CataniaCataniaItaly
  2. 2.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly

Personalised recommendations