Advertisement

Environmental Earth Sciences

, 77:802 | Cite as

Hydrogeochemical investigation of geothermal springs in Erzurum, East Anatolia (Turkey)

  • Mine AlacaliEmail author
Original Article
  • 222 Downloads

Abstract

Geothermal water sources located within The Erzurum province were identified and hot water samples were taken from four different geothermal areas. The results of in situ and hydrogeochemical analyses of these hot water samples were interpreted and the properties of hot water, water–rock associations, estimated reservoir temperature and hot water usage areas were determined. The temperatures of the samples collected from the study area vary between 26.2 and 57.7 °C, while pH values change from 6.09 to 7.33, EC values obtained from in situ measurements are between 1829 and 9480 µS/cm and Eh values are (− 190) to (26.3) mV. Total dissolved solids of the hot waters have a range from 838.7 to 3914.1 mg/l. The maximum estimated reservoir temperature is calculated as 250 °C by applying chemical geothermometers. However, considering the actual temperatures of Pasinler, Köprüköy, Horasan and Ilıca thermal waters and wells, the most reliable temperature range depending on the applied geothermometers’ results indicate minimum and maximum reservoir temperatures 85–158.9 °C, respectively, taking in account the errors. According to the isotope analysis, the waters circulating within the geothermal system are of meteoric origin and modern waters. In addition, two samples taken from clayey levels observed in the field were analyzed and the mineralogy of the clays was evaluated.

Keywords

Geothermal Erzurum Geochemistry Geothermometer 

Notes

Acknowledgements

A part of this research was supported by the Atatürk University Scientific Research Project numbered 2013/116. The author is grateful to the anonymous reviewers and to the editor for their helpful comments on an earlier version of the manuscript.

References

  1. Açıkgöz S, Yıldırım T, Taşçı A, Yıldırım N, Gevrek Aİ (1994) Pasinler (Erzurum) civarının jeolojisi ve jeotermal enerji olanakları, MTA Der., Rap no: 9993, 28 s, (yayınlanmamış), Ankara (In Turkish) Google Scholar
  2. Akan B (2002) Modeling of the Afyon Ömer–Gecek geothermal system. Jeoloji Mühendisliği Dergisi 26(2):31–52Google Scholar
  3. Akkuş İ, Akıllı H, Ceyhan S, Dilemre A, Tekin Z (2005) Türkiye Jeotermal Kaynakları Envanteri. Envanter Serisi–201. MTA, Ankara (In Turkish) Google Scholar
  4. Alacalı M (2006) The assessment of the hydrothermal alteration data of the Balçova geothermal field. In: Dokuz Eylul University Institute of Natural and Applied Sciences, geological engineering, p 139 (In Turkish) Google Scholar
  5. Alacalı M (2013) Hydrogeological modeling of Balçova geothermal system. PhD Dissertation, Isparta Süleyman Demirel University, Graduate School of Applied and Natural Sciences, Department of Geology Engineering, Isparta (In Turkish) Google Scholar
  6. Anonymous (1989) Doğu Anadolu Bölgesi Jeotermal Enerjiden Yararlanma İmkânları. MTA, AnkaraGoogle Scholar
  7. Arnórsson S (2000) Isotopic and chemical techniques in geothermal exploration, development and use: sampling methods, data handling, interpretation. International Atomic Energy Agency, Vienna, p 351Google Scholar
  8. Arnórsson S, Sigurdsson S, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47:567–577CrossRefGoogle Scholar
  9. Arpat E (1965) Ilıca-Aşkale (Erzurum) arasındaki sahanın ve kuzeyinin genel jeolojisi-petrol İmkânları. MTA, Rap. no. 4040, Ankara (Unpublished-in Turkish) Google Scholar
  10. Baba A, Simşek Ö, Deniz O (2008) The environmental and hydrogeochemical properties of the Tuzla–Kestenbol–Hıdırlar geothermal sources, Turkey. In: United Nations University, geothermal training programme, 30th anniversary workshop, August 26–27Google Scholar
  11. Boynukalın R, Tokgöz T (1985) Erzurum–Ilıca sahası jeotermal enerji aramaları rezistivite etüdü raporu, 26 s., MTA, Ankara (Unpublished, in Turkish) Google Scholar
  12. Calmbach L (1997) AquaChem computer code-version 3.7. 42, Waterloo hydrogeologic. Waterloo, Ontario, Canada, N2L 3L3Google Scholar
  13. Can AR, Yıldırım N, Özbayrak İH (1986) Erzurum–Ilıca (E-1) sıcak su sondajı kuyu bitirme raporu. MTA Enerji Hammadde Etüd ve Arama Daire Başkanlığı, Ankara (Unpublished, in Turkish) Google Scholar
  14. Carrera PM, Marques JM, Andrade M, Matias H, Luzio R, Monteiro Santos F, Nunes D (2004) Isotopic, geochemical and geophysical studies to improve Caldes De Monção thermomineral waters conceptual circulation model (NW Portugal), Caderno Lab. Xeolóxico de Laxe Coruña 29:147–170Google Scholar
  15. Clark ID, Fritz P (1997) Environmental isotopes in hydrology. Lewis Publishers, New York, p 328Google Scholar
  16. Craig M (1961) Isotopic variation in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  17. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–469CrossRefGoogle Scholar
  18. Díaz-González L, Santoyo E, Reyes-Reyes J (2008) Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos. Rev Mex Cienc Geol 25(3):465–482Google Scholar
  19. Erentöz C, Ternek Z (1969) Türkiye’de termomineral kaynaklar ve jeotermik enerji etüdleri. MTA, AnkaraGoogle Scholar
  20. Ersoy AF, Sönmez S (2014) Hydrogeochemical and isotopic characteristics of the Ilica geothermal system (Erzurum, Turkey). Environ Earth Sci 72:4451–4462.  https://doi.org/10.1007/s12665-014-3345-z CrossRefGoogle Scholar
  21. Fontes JC (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, the terrestrial environment, 1A. Elsevier, Amsterdam, pp 75–140Google Scholar
  22. Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 578CrossRefGoogle Scholar
  23. Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to the geothermometry of geothermal waters. Geothermics 10:55–70CrossRefGoogle Scholar
  24. Fournier RO (1977) A review of chemical and isotopic geothermometers for geothermal systems. In: Proceedings of the symp. on geoth. energy, cento scientific programme, Ankara, pp 133–143Google Scholar
  25. Fournier RO (1979) A revised equation for the Na/K geothermometer. Trans Geotherm Resour Counc 3:221–224Google Scholar
  26. Fournier RO (1985) Application of water geochemistry to geothermal exploration and reservoir engineering. Instituto Geologico Y Minero De Espana, Madrid, p 56Google Scholar
  27. Gat JR (1980) The isotopes of hydrogen and oxygen in precipitation. In: Fritz P, Fontes J-Ch (eds) Handbook of environmental isotope geochemistry, Chap 2, vol 1. Elsevier, AmsterdamGoogle Scholar
  28. García-López CG, Pandarinath K, Santoyo E (2014) Solute and gas geothermometry of geothermal wells: effectiveness for predicting deep reservoir temperatures by using geochemometric techniques. Int Geol Rev 56(16):2015–2049.  https://doi.org/10.1080/0026814.2014.984352 CrossRefGoogle Scholar
  29. Gedik A (1985) Tekman (Erzurum) havzasının jeolojisi ve petrol olanakları, vol 103/104. MTA Dergisi, Ankara, pp 1–24 (In Turkish) Google Scholar
  30. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  31. Gök L, Arbas A, Ateş M, İmik M, Kılınç M, Canpolat M, Aydın A (1991) Horasan (Erzurum ili) dolayının jeolojisi: MTA Der. Rap. no: 9431, 151 s., (yayınlanmamış), AnkaraGoogle Scholar
  32. Gökgöz A, Tarcan G (2006) Mineral equilibria and geothermometry of the Dalaman–Köyceğiz thermal springs, southern Turkey. Appl Geochem 21:253–268.  https://doi.org/10.1016/j.apgeochem.2005.08.010 CrossRefGoogle Scholar
  33. Google Earth (2014) Way Out TV, Inc., Santa Monica, CAGoogle Scholar
  34. Hem JD (1992) Study and interpretation of the chemical characteristics of natural water, 3rd edition. In: U.S. Geological Survey water-supply paper 2254 international association of hydrogeologist, 1979. Map of mineral and thermal water of Europe, scale: 1:500.000Google Scholar
  35. IAEA (1981) Stable isotope hydrology, deuterium and oxygen-18 in the water cycle. In: Gat JR, Gonfiantini R (eds) International Atomic Energy Agency (IAEA), Vienna, Technical reports, no 210, pp 1–339Google Scholar
  36. Karakuş¸ H, Simşek Ş (2008) Hydrogeological and geochemical studies of the Efteni and Derdin geothermal areas, Turkey. Geothermics 37:510–524.  https://doi.org/10.1016/j.geothermics.2008.06.003 CrossRefGoogle Scholar
  37. Karamanderesi İH, Ölçenoğlu K (2005) Geology of the Denizli Sarayköy (Gerali) geothermal field, Western Anatolia, Turkey. In: Proceedings world geothermal congress 2005, Antalya, Turkey, 24–29 April 2005Google Scholar
  38. Keskin B (1998) Ağrı-Diyadin jeotermal alanı jeolojik etüt raporu ve jeotermal potansiyeli. Doğan jeotermal, AnkaraGoogle Scholar
  39. Ketin İ (1966) Anadolu'nun tektonik birlikleri. MTA Dergisi 66:20–34 (Tectonic units of Anatolia. MTA Bull 66:23–34)Google Scholar
  40. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Näser ND, McCulloh TH (eds) Thermal history of sedimentary basins; methods and case histories. Springer, New York, pp 99–117CrossRefGoogle Scholar
  41. Kharaka YK, Thordsen JJ (1992) Stable isotope geochemistry and origin of water in sedimentary basins. In: Clauer N, Chaudhuri S (eds) Isotope signatures and sedimentary records. Springer, Berlin, pp 411–466CrossRefGoogle Scholar
  42. Köse R (2005) Research on the generation of electricity from the geothermal resources in Simav region, Turkey. Renewable Energy 30(1):67–79CrossRefGoogle Scholar
  43. Köse R (2007) Geothermal energy potential for power generation in Turkey: a case study in Simav, Kütahya. Renew Sustain Energy Rev 11:497–511.  https://doi.org/10.1016/j.rser.2005.03.005 CrossRefGoogle Scholar
  44. Ma Z, Li X, Zheng H, Li J, Pei B, Guo S, Zhang X (2017) Origin and classification of geothermal water from Guanzhong Basin, NW China: geochemical and isotopic approach. J Earth Sci 28(4):719–728.  https://doi.org/10.1007/s12583-016-0637-0. http://en.earth-science.net
  45. Magri F, Akar T, Gemici U, Pekdeğer A (2010) Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport process. Geofluids 10:388–405.  https://doi.org/10.1111/j.1468-8123.2009.00267.x CrossRefGoogle Scholar
  46. Mahon WJA (1964) Fluorine in natural thermal waters of New Zealand. N Z J Sci 7:3–28Google Scholar
  47. Mosaffa M, Saleh FN, Amirhosseini YK (2015) Comparison of relationship between the concentrations of water isotopes in precipitation in the cities of Tehran (Iran) and New Delhi (India). In: Raju NJ et al (eds) Management of natural resources in a changing environment. Springer, New York.  https://doi.org/10.1007/978-3-319-12559-6_2 CrossRefGoogle Scholar
  48. Nicholson K (1993) Geothermal fluids, chemistry and exploration techniques. Springer, Berlin, p 263CrossRefGoogle Scholar
  49. Pandarinath K (2011) Solute geothermometry springs and wells of the Los Azufres and Las Tres Vírgenes geothermal fields, Mexico. Int Geol Rev 53:1032–1058CrossRefGoogle Scholar
  50. Şahinci A (1986) Yeraltı suları jeokimyası. D.E.Ü. Müh. Mim. Fak. MM/JEO.86 EY 99, İzmirGoogle Scholar
  51. Şahinci A (1991) Doğal suların jeokimyası. İzmirGoogle Scholar
  52. Santoyo E, García R, Aparicio A, Verma SP, Verma MP (2005) Evaluation of capillary electrophoresis for determining the concentration of dissolved silica in geothermal brines. J Chromatogr A 1071:197–204CrossRefGoogle Scholar
  53. Şaroǧlu F, Yılmaz Y (1986) Doǧu Anadolu’da neotektonik dönemdeki jeolojik evrim and havza modelleri. Maden Tektik ve Arama Dergisi 107:73–94Google Scholar
  54. Sayın M, Eyüpoğlu S (2005) Türkiye’deki yağışların kararlı izotop içeriklerinin kullanılarak yerel meteorik doğrularının belirlenmesi, II. Ulusal Hidrolojide İzotop Teknikleri Sempozyumu, Gümüldür, İzmir (In Turkish) Google Scholar
  55. Simmons SF (2002) Geochemistry Lecture Notes 2002, Semester I, Geotherm 601, 602, 603, Geothermal Energy Technology Course, Geothermal Institute, University of Auckland, New ZealandGoogle Scholar
  56. Şimşek Ş (2003) Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics 32:669–678.  https://doi.org/10.1016/S0375-6505(03)00072-5 CrossRefGoogle Scholar
  57. Tarcan G (2002) Jeotermal su kimyası. Dokuz Eylül Üniversitesi, Jenarum yaz okulu, 11–21 June 2002, Jeotermalde yerbilimsel uygulamalar, p 49Google Scholar
  58. Tarcan G, Gemici Ü, Aksoy N (2009) Hydrogeochemical factors effecting the scaling problem in Balçova geothermal field, İzmir, Turkey. Environ Geol 58(7):1375–1386CrossRefGoogle Scholar
  59. Temizel EH, Gültekin F (2017) Hydrochemical, isotopic and reservoir characterization of the Pasinler (Erzurum) geothermal field, eastern Turkey. Arabian J Geosci 11:3.  https://doi.org/10.1007/s12517-017-3349-6 CrossRefGoogle Scholar
  60. Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geotherm Res 79:9–23CrossRefGoogle Scholar
  61. Verma SP, Pandarinath K, Santoyo E (2008) SolGeo: a new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermics 37:597–621CrossRefGoogle Scholar
  62. Yücel B, Yıldırım T, Taşçı A (1993) Ilıca Erzurum bölgesinin jeolojisi ve jeotermal olanakları, MTA Der., Rap. no: 10295, Ankara (Unpublished in Turkish) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Petroleum and Natural Gas EngineeringAtatürk University, Faculty of Earth SciencesErzurumTurkey

Personalised recommendations