Environmental Earth Sciences

, 77:642 | Cite as

Soil quality indicator of oxisols grown with sugarcane and native forest in northeastern São Paulo state, Brazil

  • Ludmila de Freitas
  • Marcílio Vieira Martins Filho
  • José Carlos Casagrande
  • Ivanildo Amorim de Oliveira
  • Luiz Gabriel da Silva
Original Article


The evaluation of soil quality is an important tool for degradation monitoring and sustainable management implementation. The objective of this study was to measure physical and chemical soil properties to set soil quality and validate a model of soil quality indicator in latosols (oxisols) under sugarcane cropping and native forest. The study was carried out in the cities of Araras, Santa Ernestina, and Guariba in São Paulo State, Brazil. We collected 24 samples of disturbed and undisturbed soil at 0.0–0.10 m layer from three areas grown with sugarcane and neighboring locations under native woodland. We assessed the following soil properties: (a) chemical—pH in CaCl2, organic matter (OM), phosphorus (P), potassium (K+), calcium (Ca2+), magnesium (Mg2+), potential acidity (H + Al), aluminum (Al3+), and sulfur (S); (b) physical—macro- and microporosity, soil bulk density (Ds), aggregate stability, mean weight diameter (MWD), rill (Kr) and interrill (Ki) global erodibility, shear stress (τc), and magnetic susceptibility (MS). Data underwent multivariate statistics to identify the properties that denote soil quality and to set their weights within the functions of soil quality indicator (SQI). This study showed that the multivariate analysis was efficient in determining which physical and chemical properties were most sensitive, of which we can mention total sand, MS, clay, microporosity, Mg, Ca, pH, and OM. We can therefore conclude that the quality indicators of soils grown with sugarcane were lower than those under forest were, showing the need for adoption of conservation management practices.


Soil properties Weighted additive model Multivariate statistics Oxisols 


  1. Addiscott TM (1992) Entropy and sustainability. Eur J Soil Sci 46:161–168CrossRefGoogle Scholar
  2. Araújo EA (2008) Qualidade do solo em ecossistemas de mata nativa e pastagens na região leste do Acre, Amazônia Ocidental. Thesis (Doctorate in Solos e Nutrição de Plantas) Faculdade de Agronomia, Universidade Federal de Viçosa, ViçosaGoogle Scholar
  3. Araújo R, Goedert WJ, Lacerda MPC (2007) Soil quality under different uses and native cerrado. R Bras Ci Solo 31:1099–1108CrossRefGoogle Scholar
  4. Armenise E, Redmile-Gordon MA, Stellacci AM, Ciccarese A, Rubino P (2013) Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil Till Res 130:91–98CrossRefGoogle Scholar
  5. Arshad MA, Coen GM (1992) Characterization of soil quality: physical and chemical criteria. AM J Altern Agr 7:25–32CrossRefGoogle Scholar
  6. Bartington (2013) Operation manual for MS2 magnetic susceptibility system. Accessed 26 Apr 2015
  7. Burger JA, Kelting DL (1999) Using soil quality indicators to assess forest stand management. For Ecol Manag 122:155–166CrossRefGoogle Scholar
  8. Camargo AO, Moniz AC, Jorge JA, Valadares JM (1986) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Campinas: Instituto Agronômico de Campinas. (IAC - BoletimTécnico, 6)Google Scholar
  9. Chaves AAA, Lacerda MPC, Goedert WJ, Ramos MLG, Kato E (2012) Quality indicators of red latosol under different uses. Pesqui Agropecu Trop 42:446–454 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  10. Dearing JA (1994) Environmental magnetic susceptibility. Using the Bartington MS2 system. British Library, EnglandGoogle Scholar
  11. Denardin JE (1990) Erodibilidade do solo estimado por meio de parâmetros físicos e químicos. 114 f. (PhD in Soil and Nutrition and Plants—Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, PiracicabaGoogle Scholar
  12. Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agro 56:1–54CrossRefGoogle Scholar
  13. Empresa Brasileira de Pesquisa Agropecuária —Embrapa (2011) Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. Rio de Janeiro, RJGoogle Scholar
  14. Empresa Brasileira de Pesquisa Agropecuária—Embrapa (2013) Sistema brasileiro de classificação de solos. 3ª ed. Brasília, DFGoogle Scholar
  15. Flanagan DC, Livingston SJUSDA (1995) Water erosion prediction project: WEEP user summary. West Lafayette: National Soil Research Laboratory and USDA—Agricultural Research Service, pp 25–26. (Report, 11)Google Scholar
  16. Freitas DAF, Navaes ML, Cardoso EL, Curi N (2012) Soil quality indexes under different forestry and adjacent native scrubland use and management systems. Rev Ciênc Agron 43:417–428 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  17. Glover JD, Reganold JP, Andrews PK (2000) Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric Ecos Environ 80:29–45CrossRefGoogle Scholar
  18. Harris RF, Karlen DL, Mulla DJ (1996) A conceptual framework for assessment and management of soil quality and health. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, pp 61–82. (SSSA Special Publication, 49) Google Scholar
  19. IPT Instituto De Pesquisas Tecnológicas do Estado de São Paulo. Mapa Geológico do Estado de São Paulo. São Paulo (1981b) v. 1. Escala 1:500.000Google Scholar
  20. IPT. Instituto De Pesquisas Tecnológicas do Estado de São Paulo (1993) Mapa geológico da folha de Campinas. São Paulo: DIGEO. 1 mapa: cópia heliográfica. Escala 1:250.000Google Scholar
  21. IPT. Instituto De Pesquisas Tecnológicas do Estado de São Paulo. Mapa Geomorfológico do Estado de São Paulo. São Paulo (1981a) v. 1. Escala 1:1.000.000Google Scholar
  22. Karlen DL, Stott DE (1994) A framework for evaluating physical and chemical indicators of soil quality. In: Doran JW, Coleman DC, Bzedicek DF, Stewart BA Defining soil quality for a sustainable environment, SSSA Special Publication, vol 35. Soil Science Society of America Journal, Madison, pp 53–72Google Scholar
  23. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Long-term tillage effects on soil quality. Soil Till Res 32:51–96CrossRefGoogle Scholar
  24. Kelting DL, Burger JA, Patterson SC, Aust WM, Miwa M, Trettin CC (1999) Soil quality assessment in domesticated forests—a southern pine example. F Ecol Manag 122:167–185CrossRefGoogle Scholar
  25. Kemper WD, Chepil WS (1965) Size distribution of aggregates. In: Black CA, Evans DD, White JL, Ensminger LE, Clarck FE (eds) Methods of soil analysis. Madison, American Society of Agronomy, Soil Science of America. Part I, pp 499–510Google Scholar
  26. Kiehl EJ (1979) Manual da edafologia. Ceres, São PauloGoogle Scholar
  27. Kondo MK, Dias Júnior MS (1999) Soil compressibility of three latosols (oxisols) as a function of moisture and use. R Bras Ci Solo 23:211–218 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  28. Melo Filho JF, Carvalho DC, Sacramento JAAS, Silveira ECP (2009) Quality index in a cohesive yellow Latosol cultivated with citrus. R Bras de Frutic 31:1168–1177 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  29. Minitab Inc (2003) Release 14 for Windows. Minitab Inc, State CollegeGoogle Scholar
  30. Myers RJK, Palm CA, Cuevas E, Gunatileke IUN, Brossard M (1994) The synchronisation of nutrient mineralisation and plant nutrient demand. In: Woomer PL, Swift PL (eds) The biological management of tropical soil fertility. J. Wiley, New York, pp 81–116Google Scholar
  31. Nunes MCM, Cassol EA (2008) Prediction of interrill soil erodibility of oxisols in Rio Grande do Sul. Brazil R Bras Ci Solo 32:2839–2845 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  32. Peluco RG, Marques Júnior J, Siqueira DS, Pereira GT, Barbosa RS, Teixeira DB, Adame CR, Cortez LA (2013) Soil magnetic susceptibility for estimating the support capacity to vinasse application. Pesq Agrop Bras 48:661–672 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  33. Raij B, Cantarella H, Quaggio JA, Furlani AMC (1997) Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. rev. e atual, Informative report, 100. Instituto Agronômico/Fundação IAC, CampinasGoogle Scholar
  34. Ribeiro KA, Oliviera TS, Mendonça ES, Xavier FAZ, Maia SMF, Sousa HHF (2007) Soil quality in soil management systems in dwarf cashew crops. R Bras Ci Solo 31:341–351 (in Portuguese, with abstract in English) CrossRefGoogle Scholar
  35. Silva AP, Tormena CA, Dias Júnior MS, Imhoff S, Klein VA (2010) Caracterização física do solo. In: Ferreira MMQ (ed) Física do solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 1–27Google Scholar
  36. STATSOFT (2004) Statistica 7.0. Tulsa: StatSoft, p 250Google Scholar
  37. Thornthwaite CW (1948) An aproach towards a rational classification of climate. G Rev 38:55–94CrossRefGoogle Scholar
  38. Vitousek PM, Sanford Junior RL (1986) Nutrient cycling in most tropical forest. A R Ecol Sci 17:137–167CrossRefGoogle Scholar
  39. Wienhold BJ, Pikul J, Liebig MA, Mikha MM, Varvel GE, Doran JW, Andrews SS (2006) Cropping system effects on soil quality in the Great Plain synthesis from a regional project. Renew Agro Food Syst 21:49–59CrossRefGoogle Scholar
  40. Wischmeier WH, Johnson CB, Cross BV (1971) Soil erodibility nomograph for farmland and construction sites. J Soil Water Conserv 26:189–193Google Scholar
  41. Wymore AW (1993) Model-based systems engineering: an introduction to the mathematical theory of discrete systems and to the tricotyledon theory of system design. CRC Press, Boca RatonGoogle Scholar
  42. Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ludmila de Freitas
    • 1
  • Marcílio Vieira Martins Filho
    • 2
  • José Carlos Casagrande
    • 3
  • Ivanildo Amorim de Oliveira
    • 1
  • Luiz Gabriel da Silva
    • 3
  1. 1.Federal Institute of Education Science and Technology of ParáBrevesBrazil
  2. 2.Faculty of Agriculture and Veterinary Sciences, Estadual University PaulistaJaboticabalBrazil
  3. 3.Center for Agrarian Sciences, Federal University of São CarlosArarasBrazil

Personalised recommendations