Advertisement

Salt efflorescence as indicator for sources of damaging salts on historic buildings and monuments: a statistical approach

  • Heiner SiedelEmail author
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

The results of XRD analyses of salt types found in more than 300 samples of efflorescence on buildings and monuments in Saxony (Germany) have been statistically evaluated. The major salt types are gypsum, magnesium sulphates, and sodium sulphates. The frequency of other alkali sulphates as well as of alkali carbonates, which are normally not detected in routine chemical analyses, is also remarkable. Nitrates (niter, nitratine) were found in about 15% of all investigated samples, whereas the chloride halite was only detected in 6% of all samples. The results correspond well to those for other regions in southern and central Germany. Efflorescing salts are only to a limited extent representative for the mixture of ions in a substrate. A thorough analysis of the salt system with respect to its damage potential needs quantitative (destructive) chemical analysis of anions and cations. However, analysis of efflorescence offers a non-destructive approach to assess the potential sources of frequently crystallising salts. The high frequency of sulphate salts indicates the long-term influence of air pollution, whereas the frequent occurrence of alkali salts gives hints towards the dominating role of hydraulic binders supplying soluble alkalis for salt formation.

Keywords

Salt efflorescence X-ray diffraction Salt types Sources of salts 

Notes

Acknowledgements

The majority of the XRD analyses was performed in the framework of scientific cooperation with and funded by the Institute for Diagnosis and Conservation on Monuments in Saxony and Saxony-Anhalt (IDK e.V.), Dresden.

References

  1. Allmann R, Kraus K (2003) Salze in historischem Mauerwerk. Ber Dt Min Ges. Beih Eur J Miner 15(1):5. http://www.salzwiki.de/index.php/Datei:Allmann_Kraus_Poster_Salze_DMG2003.pdf. Accessed 23 Feb 2018
  2. Arnold A (1981) Salzmineralien in Mauerwerken. Schweiz Miner Petrogr Mitt 61:147–166Google Scholar
  3. Arnold A (1985) Moderne alkalische Baustoffe und die Probleme bei der Konservierung von Denkmalen. Arbeitshefte des Bayerischen Landesamtes für Denkmalpflege 32:152–162Google Scholar
  4. Auras M, Beer S, Bundschuh P, Eichhorn J, Mach M, Scheuvens D, Schorling M, von Schumann J, Snethlage R, Weinbruch S (2013) Traffic-related immissions and their impact on historic buildings: implications from a pilot study at two German cities. Environ Earth Sci 69:1135–1147CrossRefGoogle Scholar
  5. Bläuer C, Rousset B (2014) Salt sources revisited. In: De Clercq H (ed) SWBSS 2014, Proceedings of the 3rd international conference on salt weathering of buildings and stone sculptures, Brussels, pp 305–318Google Scholar
  6. Bridge PJ (1974) Guanine and uricite, two new organic minerals from Peru and Western Australia. Min Mag 29:889–890CrossRefGoogle Scholar
  7. Brownell WE (1949) Fundamental factors influencing efflorescence of clay products. J Am Ceram Soc 32:375–386CrossRefGoogle Scholar
  8. Charola AE, Lewin SZ (1979) Efflorescence on building stones—SEM in the characterization and elucidation of the mechanism of formation. Scan Electron Microsc 1979(1):379–387Google Scholar
  9. Charola AE, Ware R (2002) Acid deposition and the deterioration of stone: a brief review of a broad topic. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society of London Special Publications, London, pp 393–406Google Scholar
  10. Charola AE, Rousset B, Bläuer C (2017) Deicing salts: an overview. In: Laue S (ed) SWBSS 2017, Proceedings of the 4th international conference on salt weathering of buildings and stone sculptures, Potsdam, pp 16–23Google Scholar
  11. De Clercq H (2008) The effect of other salts on the crystallisation damage to stone caused by sodium sulphate. In: Ottosen L (ed) SWBSS 2008, Proceedings of the 1st international conference on salt weathering of buildings and stone sculptures, Copenhagen, pp 307–315Google Scholar
  12. DeFreece SN, Weber J, Charola AE (2005) Hygric behaviour of two of the most deteriorating salts: sodium sulphate and sodium carbonate. Restor Build Monum 11(2):79–86Google Scholar
  13. Doehne E (2002) Salt weathering: a selective review. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society of London Special Publications, London, pp 51–64Google Scholar
  14. Espinosa-Marzal R, Franke L, Deckelmann G (2008) Predicting efflorescence and subflorescences of salts. In: Proceedings of the symposium materials issues in art and archaeology VIII: November 26–28, 2007, Boston, Massachusetts, USA (Materials Research Society), pp 105–114Google Scholar
  15. Flatt RJ, Nevin Aly M, Caruso F, Derluyn H, Desarnaud J, Lubelli B, Espinosa-Marzal RM, Pel L, Rodriguez-Navarro C, Scherer GW, Shahidzadeh N, Steiger M (2017) Predicting salt damage in practice: a theoretical insight into laboratory tests. RILEM Tech Lett 2:108–118CrossRefGoogle Scholar
  16. Goudie AS (1986) Laboratory simulation of the “Wick effect” in salt weathering of rock. Earth Surf Proc Landf 11:275–285CrossRefGoogle Scholar
  17. Grassegger G (1997) Die Verwitterung von Natursteinen an Bauten und Denkmälern. In: Berufsbildungswerk des Steinmetz- und Bildhauerhandwerks e.V. (ed) Naturwerkstein in der Denkmalpflege, Ebner, Ulm, pp 434–489Google Scholar
  18. Haage R (1988) Grundlagenuntersuchungen zur Verhinderung von Ausblühungen an grobkeramischen Erzeugnissen. Baustoffindustrie 3:94–96Google Scholar
  19. Hoferick F, Siedel H (1999) Die Ablaugung von Ölfarbanstrichen am Dresdner Zwinger—Geschichte und Folgeschäden. Mitteilungen des Landesamtes für Denkmalpflege Sachsen 1999:80–88Google Scholar
  20. Klemm W, Siedel H (2002) Evaluation of the origin of sulphate compounds in building stones by sulphur isotope ratio. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society of London Special Publications, London, pp 419–429Google Scholar
  21. Klenz Larsen P (2007) The salt decay of medieval bricks at a vault in Brarup Church, Denmark. Environ Geol 52:375–383CrossRefGoogle Scholar
  22. Kraus K, Droll K (2005) Investigations of soluble salt contents in modern hydraulic lime mortars—test method and first results. In: Proceedings of the international RILEM workshop on repair mortars for historic masonry, January 26–28, 2005, Delft, pp 207–211Google Scholar
  23. Kraus K, Eisenberg J, Schenk D, Droll K (2003) Untersuchung wasserlöslicher Salzgehalte in modernen hydraulischen Kalkmörteln. In: Proceedings of the 6th international conference on material science and restoration (MSR-VI), Aedificatio Publishers, pp 313–324Google Scholar
  24. Künzel H (2001) Woher kommt der Mauersalpeter? Arconis 6(1):40–42Google Scholar
  25. Liebig E, Althaus E (1998) Pozzolanic activity of volcanic tuff and suevite: effects of calcination. Cem Concr Res 28:567–575CrossRefGoogle Scholar
  26. Lubelli B (2006) Sodium chloride damage to porous building materials. PhD thesis, TU DelftGoogle Scholar
  27. Martinez-Ramirez S, Puertas F, Blanco-Varela MT, Thompson GE (1997) Studies on degradation of lime mortars in atmospheric simulation chambers. Cem Concr Res 27:777–784CrossRefGoogle Scholar
  28. Neumann HH (1994) Aufbau, Ausbildung und Verbreitung schwarzer Gipskrusten, dünner schwarzer Schichten und Schalen sowie damit zusammenhängender Gefügeschäden an Bauwerken aus Naturstein. Schriftenreihe Angewandte Analytik Hamburg 24:1–178Google Scholar
  29. Price C (2007) Predicting environmental conditions to minimise salt damage at the Tower of London: a comparison of two approaches. Environ Geol 52:369–374CrossRefGoogle Scholar
  30. Přikryl R, Melounova L, Vařilova Z, Weishauptova Z (2007) Spatial relationships of salt distribution and related physical changes of underlying rocks on naturally weathered sandstone exposures (Bohemian Switzerland National Park, Czech Republic). Environ Geol 52:283–294CrossRefGoogle Scholar
  31. Rossa-Doria PR (1986) Mortars for the restoration: basic requirements and quality control. Mater Struct 19:445–448CrossRefGoogle Scholar
  32. Schaffer RJ (1932) The weathering of natural building stones. Department of Scientific and Industrial Research, Building Research, Special Report no. 18, NottinghamGoogle Scholar
  33. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624CrossRefGoogle Scholar
  34. Schiro M, Ruiz-Agado E, Rodriguez-Navarro C (2012) Damage mechanisms of porous materials due to in-pore salt crystallization. Phys Rev Lett 109:265503–265501CrossRefGoogle Scholar
  35. Siedel H (2013) Magnesium sulphate salts on monuments in Saxony (Germany): regional geological and environmental causes. Environ Earth Sci 69:1249–1260CrossRefGoogle Scholar
  36. Siedel H, Siegesmund S, Sterflinger K (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer, Berlin/Heidelberg, pp 349–414CrossRefGoogle Scholar
  37. Smith BJ, Baptista-Neto JA, Silva MAM, McAllister JJ, Warke P, Curran JM (2004) The decay of coastal forts in southeast Brazil and its implications for the conservation of colonial built heritage. Environ Geol 46:493–503CrossRefGoogle Scholar
  38. Steiger M (2005) Crystal growth in porous materials—I: The crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  39. Steiger M, Linnow K, Juling H, Gülker G, El Jarad A, Brüggerhoff S, Kirchner D (2008) Hydration of MgSO4·H2O and generation of stress in porous materials. Cryst Growth Des 8:336–343CrossRefGoogle Scholar
  40. Steiger M, Charola AE, Sterflinger K (2014) Weathering and Deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture, 5th edn. Springer, Berlin/Heidelberg, pp 225–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Civil Engineering, Institute of Geotechnical Engineering, Chair of Applied GeologyTU DresdenDresdenGermany

Personalised recommendations