Dependence of radon exhalation on grain size of sedimentary waste

  • Eman M. Ibrahim
  • Ibrahim E. El Aassy
  • Hayam Ahmed Abdel GhanyEmail author
  • S. H. Gamil
Original Article


Tailings resulted from sulphuric acid leaching process of uranium from sedimentary rocks contain high concentrations of 226Ra and its daughters, the most important of which is 222Rn. Movement of radon gas out of the tailings is strongly influenced by the physicochemical characteristics of these tailings especially their radium content and the grain size. So, the tailing samples were size fractionated into four sizes (> 250, 250–125, 125–74 and < 74 µm). The natural radioactivity was investigated using hyper-pure germanium detector and solid-state nuclear track detectors (CR-39) for bulk size and after size fractionation. The activity concentrations of different radionuclides in size-fractionated tailing samples have been shown to be strongly dependent on the size of the particles. In the range of > 250 and < 74 µm, the activity concentrations of 230Th, 226Ra, 214Pb, 214Bi, 210Pb, 232Th and 40K increased throughout with decreasing particle size, while that of 238U, 234U and 235U have an opposite effect. The results revealed an inverse relationship between the radon exhalation rate and size fractionation. Also, the results showed a good correlation between radium activity concentration and radon mass exhalation rate.


Gamma spectrometry Tailings Size fractionation Radionuclide distribution Radon exhalation rate 


  1. Abu-Jarad F (1988) Application of nuclear track detectors for radon related measurements. Nucl Tracks Radiat Meas 15:525–534CrossRefGoogle Scholar
  2. Anjos RM, Veiga R, Soares T, Santos AMA, Aguiar JG, Frascá MHBO, Brage JAP, Uzêda D, Mangia L, Facure A, Mosquera B, Carvalho C, Gomes PRS (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39:245–253CrossRefGoogle Scholar
  3. August RA, Phillips GW, Harper M, Nelson M, Gann S (1999) Mixed waste characterization in soil. Nucl Instrum Methods Phys Res A 422:767–772CrossRefGoogle Scholar
  4. Barillon R, Özgümüs A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content. Geochim Cosmochim Acta 69:2735–2744CrossRefGoogle Scholar
  5. Bhattacharyya DK (1998) Issues in the disposal of waste containing naturally occurring radioactive material. Appl Radiat Isot 49:215–226CrossRefGoogle Scholar
  6. Bihari Ά, Dezső Z (2008) Examination of the effect of particle size on the radionuclide content of soils. J Environ Radioact 99:1083–1089CrossRefGoogle Scholar
  7. Breitner D, Arvela H, Hellmuth KH, Renvall TJ (2010) Effect of moisture content on emanation at different grain size fractions: a pilot study on granitic esker sand sample. Environ Radiol 101:1002–1006CrossRefGoogle Scholar
  8. Chandrappa R, Das DB (2012) Solid waste management. Principles and practice. Springer, Berlin HeidelbergGoogle Scholar
  9. El Aassy IE, Nada AA, El Galy MM, El Feky MG, Abd El Maksoud TM, Talaat SM (2012) Behavior and environmental impacts of radionuclides during the hydrometallurgy of calcareous and argillaceous rocks, southwestern Sinai, Egypt. Appl Radiat Isot 70:1024–1033CrossRefGoogle Scholar
  10. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview Earth planet. Phys Earth Planet Inter 129,185–204CrossRefGoogle Scholar
  11. Ferry C, Richon P, Beneito A, Robé MC (2002) Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis. J Environ Radioact 63:49–64CrossRefGoogle Scholar
  12. Goulden WD(1997) The geochemical distribution of radium-226 in Cluff lake uranium mil tailings. M.Sc. Thesis, University Saskatchewan, Saskatoon, p 225Google Scholar
  13. Hafez AF, Hussein AS, Rasheed NM (2000) Radon measurements in underground metro stations in Cairo City, Egypt. In: 7th conference nuclear science and applications, Cairo, Egypt, 6–10, FebruaryGoogle Scholar
  14. Harb S, El- Kamel AH, Abd El-Mageed AF, Abbady A, Wafaa R (2008) Concentration of 238U, 235U, 226Ra, 232Th and 40K for some Granite samples in Eastern Desert of Egypt. In: Proceedings of the 3rd environmental physics conference, 19–23 Feb., Aswan, Egypt, pp 109–117Google Scholar
  15. Harb S, Ahmed NK, Sahar E (2016) Effect of grain size on the radon exhalation rate and emanation coefficient of soil, phosphate and building material samples. J Nucl Part Phys 6:80–87Google Scholar
  16. IAEA, International Atomic Energy Agency (1987) Preparation and certification of IAEA gamma spectrometry reference materials, RGU-1, RGTh-1 and RGK-1. International Atomic Energy Agency. Report-IAEA/RL/148Google Scholar
  17. IAEA, International Atomic Energy Agency (2014) The environmental behavior of radium: revised edition. Technical Reports Series No. 476, International Atomic Energy Agency, Vienna, p 267Google Scholar
  18. Issa SAM, Uosif MAM, Tammam M, Elsaman R (2014) A comparative study of the radiological hazard in sediments samples from drinking water purification plants supplied from different sources. J Radiat Res Appl Sci 7(6):80–94CrossRefGoogle Scholar
  19. Jing C (2017) Lifetime lung cancer risks associated with indoor radon exposure based on various radon risk models for Canadian population. Radiat Protect Dosim 173:252–258CrossRefGoogle Scholar
  20. Khan AJ, Prasad R, Tyagi RK (1992) Measurement of radon exhalation rate from some building materials. Nucl Tracks Radiat Meas 20:609–610CrossRefGoogle Scholar
  21. Lottermoser BG (2010) Mine wastes, 3rd edn. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  22. Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Protect Dosim 45:269–272CrossRefGoogle Scholar
  23. Megumi K (1979) Radioactive disequilibrium of uranium and actinium series nuclides in soil. J Geophys Res 84:3677–3682CrossRefGoogle Scholar
  24. Megumi K, Mamuro T (1977) Concentration of uranium series nuclides in soil particles in relation to their size. J Geophys Res 82:353–356CrossRefGoogle Scholar
  25. Meneley WA (1990) Cluff lake tailings area investigations, 1989 and review of conceptual decommissioning plan, no. 0018-098. W.A. Meneley Consultants Ltd, SaskatoonGoogle Scholar
  26. Menetrez MY, Mosley RB (1996) Evaluation of radon emanation from soil with varying moisture content in a soil chamber. Environ Int 22:447–453CrossRefGoogle Scholar
  27. Metzler DR (2004) Uranium mining: environmental impact. Encycl Energy 6, 299–315Google Scholar
  28. Nair RN, Sunny F, Manikandan ST (2010) Modelling of decay chain transport in groundwater from uranium tailings ponds. Appl Math Model 34:2300–2311CrossRefGoogle Scholar
  29. Nasir T, Ahmad N (2012) The effect of grain size on radon exhalation rate in soil samples of Dera Ismail Khan in Pakistan. J Basic Appl Sci 8(2):430–436Google Scholar
  30. Ojovan MI, Lee WE (2005) An introduction to nuclear waste immobilisation. Elsevier Ltd, AmsterdamGoogle Scholar
  31. Pöllänen R, Ikäheimonen TK, Klemol S, Vartti VP, Vesterbacka K, Ristonmaa S, Honkamaa T, Sipilä P, Jokelainen I, Kosunen A, Zilliacus R, Kettunen M, Hokkanen M (2003) Characterization of projectiles composed of depleted uranium. J Environ Radioact 64:133–142CrossRefGoogle Scholar
  32. Ramebäck H, Vesterlund A, Tovedal A, Nygren U, Wallberg L, Holm E, Ekberg C, Skarnemark G (2010) The jackknife as an approach for uncertainty assessment in gamma spectrometric measurements of uranium isotope ratios. Beam Interact Mater Atoms 268:2535–2538Google Scholar
  33. Rashmi K, Sharma GSA (2009) Activity measurements and dependence of radon exhalation rate on physical sample parameters in soil samples. Asian J Chem 21:271–274Google Scholar
  34. Rickert DA, Kennedy VC, McKenzie SW, Hines WG (1977) A synoptic survey of trace metals in bottom sediments of the Willamette River, vol 715. U.S. Geological Survey Circular, Oregon, p 27Google Scholar
  35. Ritcey GM (1990) Weathering processes in uranium tailings and the migration of contaminants. In: The environmental behavior of radium. International Atomic Energy Agency, Vienna, pp 27–82Google Scholar
  36. Seeley FG (1977) Problems in the separation of radium from uranium ore tailings. Hydrometallurgy 2:249–263CrossRefGoogle Scholar
  37. Shweikani R, Giaddui TG, Durrani SA (1995) The effect of soil parameters on the radon concentration values in the environment. Radiat Meas 25:581–584CrossRefGoogle Scholar
  38. Simpso J, Grün R (1998) Non-destructive gamma spectrometric U-series dating. Quat Geochronol 17:1009–1022Google Scholar
  39. Sjölander P (2008) Specific activity in size-fractionated alum-shales effects of particle size. M.Sc. Thesis, Department Of Radiation Physics, University of Gothenburg, p 29Google Scholar
  40. Somogi G, Hafez I, Hunyadi M (1986) Toth-Szi-Lagyi measurements of exhalation and diffusion parameters of radon in solid by plastic track detectors. Nucl Tracks 12:701CrossRefGoogle Scholar
  41. Sundal AV, Henriksen H, Lauitzen SE, Soldal O, Strand T, Valen V (2004) Geological and geochemical factors affecting radon concentrations in dwellings located on permeable glacial sediments—a case study from Kinasarvik, Norway. Environ Geol 45:843–858CrossRefGoogle Scholar
  42. Tan K, Zehua Z, Xia L, Lv J, Hu H (2012) The influence of fractal size distribution of covers on radon exhalation from uranium mill tailings. Radiat Meas 47:163–167CrossRefGoogle Scholar
  43. Tuccimei P, Moroni M, Norcia D (2006) Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: Influence of particle size, humidity and precursors concentration. Appl Radia Isot 64:254–263CrossRefGoogle Scholar
  44. Yokoyama Y, Falguères C, Sémah F, Jacob T, Grün R (2008) Gamma-ray spectrometric dating of late homo erectus skulls from Ngandong and Sambungmacan, Central Java, Indonesia. J Hum Evol 55:274–277CrossRefGoogle Scholar
  45. Yücel H, Cetiner MA, Demirel H (1998) Use of the 1001 keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HPGe gamma-ray spectrometry. Nucl Instrum Methods Phys Res Sect A 413:74–82CrossRefGoogle Scholar
  46. Yücel H, Solmaz AN, Köse E, Bor D (2010) Methods for spectral interference corrections for direct measurements of 234U and 230Th in materials by gamma-ray spectrometry. Radiat Prot Dosim 138:264–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eman M. Ibrahim
    • 1
  • Ibrahim E. El Aassy
    • 1
  • Hayam Ahmed Abdel Ghany
    • 2
    Email author
  • S. H. Gamil
    • 3
  1. 1.Nuclear Materials AuthorityCairoEgypt
  2. 2.Physics Department, Faculty of Women for Arts, Science and EducationAin-Shams UniversityCairoEgypt
  3. 3.CairoEgypt

Personalised recommendations