Mobility of trace elements between the river water, the sediments, and the pore water of Las Catonas Stream, Buenos Aires Province, Argentina

  • Cecilia G. Cantera
  • Roberto A. Scasso
  • Ana Tufo
  • Laura B. Villalba
  • Maria dos Santos AfonsoEmail author
Thematic Issue
Part of the following topical collections:
  1. IV RAGSU -- Advances in Geochemistry of the Surface in Argentina


The composition of river water, sediments, and pore waters (down to 30 cm below the bed) of Las Catonas Stream was studied to analyze the distribution of trace elements in a peri-urban site. The Las Catonas Stream is one of the main tributaries of Reconquista River, a highly polluted water course in the Buenos Aires Province, Argentina. The semi-consolidated Quaternary sediments of the Luján Formation are the main source of sediments for Las Catonas Stream. The coarse-grained fraction in the sediments is mainly composed of tosca (calcretes), intraclasts, bone fragments, glass shards, quartz, and aggregates of fine-grained sediments together with considerably amounts of vegetal remains. The clay minerals are illite, illite–smectite, smectite, and kaolinite. For the clay-sized fraction, the external surface area values are mostly between 70 and 110 m2g−1, although the fraction at 15 cm below the bottom of the river shows a lower surface area of 12 m2g−1. The N2 adsorption–desorption isotherms at 77 K for this sample display a behavior indicative of non-porous or macroporous material, whereas the samples above and below present a typical behavior of mesoporous materials with pores between parallel plates (slit-shaped). As, Cr, Cu, and Cd concentrations increase down to 15 cm depth in the sediments, where the highest trace element and total organic carbon (TOC) concentrations were found, and then decrease toward the bottom of the core. Except for As, the levels of the other heavy metals show higher concentration in surficial waters than in pore waters. Distribution coefficients between the sediments, pore water, and surficial water phases indicate that As is released from the sediments to the pore and surficial waters. Cu content strongly correlates with TOC (mainly from vegetal remains), suggesting that this element is mainly bound to the organic phase.


Geochemistry Clay minerals Partitioning coefficient Heavy metals 



The authors acknowledge the financial support of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, and Ministerio de Educación de la Nación. The authors would also like to thank Carlos E. Alli (SENASA) for helping in AAS trace element determination in water samples; Germán Segado and his team from the Municipalidad de Moreno for their logistic support; “Río Reconquista” project members for their collaboration in water and sediments sampling; and M. Alcira Trinelli for her collaboration in physicochemical determinations of water samples.


  1. APHA, AWWA, WEF (1992) Standard methods for examination of water and wastewater, Parts 3000 and 4000. American Public Health Association, Washington DCGoogle Scholar
  2. Brunauer S, Emmett PH, Teller E (1938) Gases in multimolecular layers. J Am Chem Soc 60(1):309–319CrossRefGoogle Scholar
  3. Bufflap S, Allen H (1995) Sediment pore water collection methods for trace metal analysis: a review. Water Res 29(1):165–177CrossRefGoogle Scholar
  4. Camilión C (1993) Clay mineral composition of Pampean Loess (Argentina). Quat Int 17:27–31CrossRefGoogle Scholar
  5. Canavan RW, Van Cappellen P, Zwolsman JJG, van den Berg GA, Slomp CP (2007) Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Sci Total Environ 381(1–3):263–279CrossRefGoogle Scholar
  6. Castañé PM, Rovedatti MG, Topalián ML, Salibián A (2006) Spatial and temporal trends of physicochemical parameters in the water of the Reconquista river (Buenos Aires, Argentina). Environ Monit Assess 117(1–3):135–144CrossRefGoogle Scholar
  7. Duursma EK, Carroll JL (2012) Environmental compartments: equilibria and assessment of processes between air, water, sediments and biota. Springer, BerlinGoogle Scholar
  8. Fergusson J (1991) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, OxfordGoogle Scholar
  9. Fernández-Ortiz de Vallejuelo S, Gredilla A, de Diego A, Arana G, Madariaga JM (2014) Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Sci Total Environ 473–474:359–371CrossRefGoogle Scholar
  10. González Bonorino F (1966) Soil clay mineralogy of the pampa plains, Argentina. Sediment Petrol 36:1026–1035Google Scholar
  11. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ashraf Ali M, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater extraction in Bangladesh. Science 298(5598):1602–1606CrossRefGoogle Scholar
  12. Heller-Kallai L, Bergaya F, Theng BKG, Lagaly G (2006) Thermally modified clay minerals. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of Clay Science, vol. 1, Developments in Clay Science. Elsevier, Amsterdam Ltd., pp 289–308Google Scholar
  13. Horowitz A (1985) A primer on trace metal-sediment chemistry. U.S. Geological Survey Water-Supply Paper, p 72Google Scholar
  14. Instituto Nacional de Tecnología Agropecuaria (INTA) (1990) Atlas de Suelos de la República Argentina. TY: 83–85. Buenos AiresGoogle Scholar
  15. Instituto Nacional de Tecnología Agropecuaria (INTA) (2015) Sistema de Información y Gestión Agrometeorológica. Accessed 2 Oct 2016
  16. Kuczynski D (2016) Occurrence of pathogenic bacteria in surface water of an urban river in Argentina (Reconquista River, Buenos Aires). Int J Aquat Sci 7(1):30–38Google Scholar
  17. Kuila U, Prasad M (2013) Specific surface area and pore-size distribution in clays and shales. Geophys Prospect 61(2):341–362CrossRefGoogle Scholar
  18. Lagaly G, Ogawa M, Dekany I (2013) Clay mineral–organic interactions. In: Bergaya F, Lagaly (eds), Developments in Clay Science, Elsevier, Amsterdam, pp 245–328Google Scholar
  19. Ley N°24.051 Dec. 831/93 (1993) Accessed 16 Oct 2016
  20. Manassero M, Camilión C, Poiré D, Da Silva M, Ronco A (2008) Grain size analysis and clay mineral associations in bottom sediments from Paraná river basin. Latin Am J Sedimentol Basin Anal 15(2):125–137Google Scholar
  21. Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, OxfordGoogle Scholar
  22. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of Soil Analysis, Part 2, 2nd ed., Agronomy, vol 9. Am. Soc. of Agron., Inc, Madison, pp 961–1010Google Scholar
  23. Periáñez R (2009) Environmental modelling in the Gulf of Cadiz: heavy metal distributions in water and sediments. Sci Total Environ 407(10):3392–3406CrossRefGoogle Scholar
  24. Porzionato N, Tufo A, Candal R, Curutchet G (2017) Metal bioleaching from anaerobic sediments from Reconquista River basin (Argentina) as a potential remediation strategy. Environ Sci Pollut Res 24(3):25561–25570CrossRefGoogle Scholar
  25. Rendina A, de Iorio AF (2012) Heavy metal partitioning in bottom sediments of the Matanza-Riachuelo River and main tributary streams. Soil Sediment Contamination 21(1):62–81CrossRefGoogle Scholar
  26. Rigacci L, Giorgi A, Vilches C, Ossana N, Salibian A (2013) Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina. Environ Monit Assess 185:9161–9168CrossRefGoogle Scholar
  27. Rigaud S, Radakovitch O, Couture RM, Deflandre B, Cossa D, Garnier C, Garnier JM (2013) Mobility and fluxes of trace elements and nutrients at the sediment–water interface of a lagoon under contrasting water column oxygenation conditions. Appl Geochem 31:35–51CrossRefGoogle Scholar
  28. Ronco A, Camilión C, Manassero M (2001) Geochemistry of heavy metals in bottom sediments from streams of the western coast of the Rio de la Plata Estuary, Argentina. Environ Geochem Health 23(2):89–103CrossRefGoogle Scholar
  29. Ronco A, Peluso L, Jurado M, Bulus Rossini G, Salibián A (2008) Screening of sediment pollution in tributaries from the Southwestern Coast of the Rio de la Plata Estuary. Latin Am J Sedimentol Basin Anal 15(1):67–75Google Scholar
  30. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KSW (2013) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, ElsevierGoogle Scholar
  31. Saeedi M, Hosseinzadeh M, Rajabzadeh M (2011) Competitive heavy metals adsorption on natural bed sediments of Jajrood River, Iran. Environ Earth Sci 62(3):519–527CrossRefGoogle Scholar
  32. Salibián A (2006) Ecotoxicological assessment of the highly polluted Reconquista River of Argentina. In Ware GW, Nigg HN, Doerge DR (eds) Reviews of environmental contamination and toxicology. Springer, New YorkGoogle Scholar
  33. Salomons W, Förstner U (1984) Metals in hydrocycle. Springer, Berlin, pp 63–98CrossRefGoogle Scholar
  34. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):2201–2218CrossRefGoogle Scholar
  35. Toledo MJ (2011) El legado lujanense de ameghino: Revisión estratigráfica de los depósitos pleistocenos- holocenos del valle del río luján en su sección tipo. registro paleoclimático en la pampa de los estadios OIS 4 al OIS 1. Revista de la Asociacion Geologica Argentina 68(1):121–167Google Scholar
  36. US EPA (2016) National recommended water quality criteria—aquatic life criteria table. Accessed 9 Oct 2017
  37. Vullo DL, Ceretti HM, Hughes EA, Ramírez S, Zalts A (2005) Indigenous heavy metal multiresistant microbiota of Las Catonas stream. Environ Monit Assess 105(1–3):81–97CrossRefGoogle Scholar
  38. WHO (1996) Guidelines for drinking-water quality, vol 2, 2nd edn. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA)CONICET-Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  2. 2.Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
  3. 3.Instituto de Investigación e Ingeniería Ambiental (3iA)Universidad Nacional de San MartínSan MartínArgentina
  4. 4.Coordinación de Activos y Residuos Químicos, Departamento de Medicamentos y ContaminantesÁrea Absorción Atómica, SENASAMartínezArgentina
  5. 5.Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE)CONICET-Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations