Impact of drilling mud on chemistry and microbiology of an Upper Triassic groundwater after drilling and testing an exploration well for aquifer thermal energy storage in Berlin (Germany)

  • Simona RegenspurgEmail author
  • Mashal Alawi
  • Guido Blöcher
  • Maria Börger
  • Stefan Kranz
  • Ben Norden
  • Ali Saadat
  • Traugott Scheytt
  • Lioba Virchow
  • Andrea Vieth-Hillebrand
Original Article


After completion of an exploration well, sandstones of the Exter Formation were hydraulically tested to determine the hydraulic properties and to evaluate chemical and microbial processes caused by drilling and water production. The aim was to determine the suitability of the formation as a reservoir for aquifer thermal energy storage. The tests revealed a hydraulic conductivity of 1–2 E-5 m/s of the reservoir, resulting in a productivity index of 0.6–1 m3/h/bar. A hydraulic connection of the Exter Formation to the overlaying, artesian “Rupelbasissand” cannot be excluded. Water samples were collected for chemical and microbiological analyses. The water was similarly composed as sea water with a maximum salinity of 24.9 g/L, dominated by NaCl (15.6 g/L Cl and 7.8 g/L Na). Until the end of the tests, the water was affected by drilling mud as indicated by the high pH (8.9) and high bicarbonate concentration (359 mg/L) that both resulted from the impact of sodium carbonate (Na2CO3) additives. The high amount of dissolved organic matter (> 58 mg/L) and its molecular-weight distribution pattern indicated that residues of cellulose, an ingredient of the drilling mud, were still present at the end of the tests. Clear evidence of this contamination gave the measured uranine that was added as a tracer into the drilling mud. During fluid production, the microbial community structure and abundance changed and correlated with the content of drilling mud. Eight taxa of sulfate-reducing bacteria, key organisms in processes like bio-corrosion and bio-clogging, were identified. It can be assumed that their activity will be affected during usage of the reservoir.


ATES Aquifer thermal energy storage Drilling mud Geochemistry Microbiology Hydraulic testing Sulfate reduction 



The authors gratefully acknowledge Iris Pieper of the “Geochemisches Gemeinschaftslabor” at the Technical University of Berlin for inorganic ion analysis and Sarah Zeilfelder for assistance during sampling. Kristin Günther and Georg Schettler from GFZ are acknowledged for the analysis of organic components and grain-size distribution of cuttings, respectively. A special thanks goes to Fabian Horn (GFZ) for helping to process the DNA sequence data. The research was funded by the German Ministry of Energy and Economics (BMWi) within the research and demonstration project “Efficiency and safety of energy systems with seasonal energy storage in aquifers for urban quarters”.

Supplementary material

12665_2018_7696_MOESM1_ESM.xlsx (31 kb)
S1: OTU_table (XLSX 31 KB)
12665_2018_7696_MOESM2_ESM.xlsx (6 kb)
S2: observed_taxa_(order-level) (0.4%_cut-off) (XLSX 5 KB)
12665_2018_7696_MOESM3_ESM.xlsx (8 kb)
S3: Taxa_linked_to_technical_fluids_(not_present_at_end_of_pump_test) (XLSX 8 KB)


  1. Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2011) Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16:105–112CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (2009) Geochemistry, groundwater and pollution, 2. Aufl. A.A. Balkema, LeidenGoogle Scholar
  3. Banzhaf S, Krein A, Scheytt T (2013) Using selected pharmaceutical compounds as indicators for surface water and groundwater interaction in the hyporheic zone of a low permeability riverbank. Hydrol Process 27(20):2892–2902Google Scholar
  4. Barth G, Franz M, Heunisch C, Wolfgramm M (2013) Deep geothermal reservoirs of the Lower Exter Formation (Upper Keuper, Triassic) in the North German Basin: the geothermal potential of distributive fluvial systems. DMG-Gv Meeting Tübingen, abstract volumeGoogle Scholar
  5. Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Heidemann W, Müller-Steinhagen H (2010) German central solar heating plants with seasonal heat storage. Sol Energy 84(4):612–623CrossRefGoogle Scholar
  6. Beech IB, Sunner J (2004) Biocorrosion towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186CrossRefGoogle Scholar
  7. Beyer W (1964) Zur Bestimmung der Wasserdurchlassigkeit von Kiesen und Sanden aus der ornverteilung. Wasserwirtschaft Wassertechnik (WWT) 6:165–169Google Scholar
  8. Birsoy YK, Summers WK (1980) Determination of aquifer parameters from step tests and intermittent pumping data. Groundwater 18(2):137–146CrossRefGoogle Scholar
  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman, FD & other authors (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  10. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108: 4516–4522. CrossRefGoogle Scholar
  11. Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188CrossRefGoogle Scholar
  12. DVGW, Deutscher Verein des Gas- und Wasserfaches (1998) Verwendung von Spülungszusätzen in Bohrspülungen bei Bohrarbeiten im Grundwasser. DVGW-Regelwerk, Merkblatt 116, BonnGoogle Scholar
  13. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefGoogle Scholar
  14. Feldbusch E, Regenspurg S, Banks J, Milsch H, Saadat A (2013) Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck. Environ Earth Sci 70(8):3447–3458CrossRefGoogle Scholar
  15. Filippidou S, Jaussi M, Junier T, Wunderlin T, Jeanneret N, Palmieri F et al (2016) Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station. International journal of systematic evolutionary microbiology 66(8):2944–2951CrossRefGoogle Scholar
  16. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205. CrossRefGoogle Scholar
  17. Hammer Ø, Harper DAT, Ryan PD (2001) PAST—palaeontological statistics, ver. 1.89. Palaeontol Electron 4(1):1–9Google Scholar
  18. Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography–organic carbon detection–organic nitrogen detection (LC–OCD–OND). Water Res 45(2):879–885CrossRefGoogle Scholar
  19. Javerhadashti R (2008) Microbiologically influenced corrosion. An engineering insight. Springer, LondonGoogle Scholar
  20. Kabus F, Wolfgramm M, Seibt A, Richlak U, Beuster H (2009) Aquifer thermal energy storage in Neubrandenburg: monitoring throughout three years of regular operation. In Proceedings of the 11th international conference on energy storageGoogle Scholar
  21. Käss W (2004) Geohydrologische Markierungstechnik: Mit 43 Tabellen. XIV, 557 S.In. In: Lehrbuch der Hydrogeologie, Bd. 9, 2. Aufl. Borntraeger, StuttgartGoogle Scholar
  22. Krauze P, Kämpf H, Horn F, Liu Q, Voropaev A, Wagner D, Alawi M (2017) Microbiological and geochemical survey of CO2-dominated mofette and mineral waters of the Cheb Basin, Czech Republic. Front Microbiol 8:2466. CrossRefGoogle Scholar
  23. Langguth HR, Voigt R (2004) Hydrogeologische Methoden. xiv, 1005, 2. Aufl. Springer, BerlinGoogle Scholar
  24. Lee KS (2013) Aquifer thermal energy storage. In: Underground thermal energy storage. Springer, London, pp 59–93CrossRefGoogle Scholar
  25. Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16(2):93–104CrossRefGoogle Scholar
  26. Little BJ, Lee JS (2007) Microbiologically influenced corrosion. Wiley, HobokenCrossRefGoogle Scholar
  27. Magal E, Weisbrod N, Yakirevich A, Yechieli Y (2008) The use of fluorescent dyes as tracers in highly saline groundwater. J Hydrol 358:124–133CrossRefGoogle Scholar
  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10CrossRefGoogle Scholar
  29. McCaughey M, Divine CE, Gefell MJ, McGrane S (2016) Using tracers to quantify drilling water influence and obtain representative groundwater samples. Groundw Monit Remediat 36(1):71–78CrossRefGoogle Scholar
  30. Morozova D, Wandrey M, Zimmer M, Pilz P, Zettlitzer M, Würdemann H, the CO2SINK Group (2010) Monitoring of the microbial community composition in saline aquifers during CO2 sequestration by fluorescence in situ hybridisation. Int J Greenh Gas Control 4:981–989. CrossRefGoogle Scholar
  31. Müller D, Regenspurg S (2014) Geochemical characterization of the Lower Jurassic aquifer in Berlin (Germany) for aquifer thermal energy storage applications. Energy Procedia 59:285–292CrossRefGoogle Scholar
  32. Müller DR, Friedland G, Regenspurg S (2017) An improved sequential extraction method to determine element mobility in pyrite-bearing siliciclastic rocks. Int J Environ Anal Chem 97(2):168–188CrossRefGoogle Scholar
  33. Mundhenk N, Huttenloch P, Sanjuan B, Kohl T, Steger H, Zorn R (2013) Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corros Sci 70:17–28CrossRefGoogle Scholar
  34. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266CrossRefGoogle Scholar
  35. Paksoy H, Snijders A, Stiles L (2009) State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. In: Proceedings of the EFFSTOCK conference, Stockholm, SwedenGoogle Scholar
  36. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculationsGoogle Scholar
  37. Pellizzari L, Neumann D, Alawi M, Voigt D, Norden B, Würdemann H (2013) Use of tracers to assess drill mud penetration depth into sandstone rock cores during deep drilling: method development and application. Environ Earth Sci 70:3727–3738. CrossRefGoogle Scholar
  38. Pellizzari L, Lienen T, Kasina M, Würdemann H (2017) Influence of drill mud on the microbial communities of sandstone rocks and well fluids at the Ketzin pilot site for CO2 storage. Environ Earth Sci. Google Scholar
  39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. pmid:23193283Google Scholar
  40. Regenspurg S, Feldbusch E, Byrne J, Deon F, Driba DL, Henninges J, Kappler A, Naumann R, Reinsch T, Schubert C (2015) Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir. Geothermics 54:122–135CrossRefGoogle Scholar
  41. Regenspurg S. Feldbusch E, Norden B, Tichomirowa M (2016) Fluid–rock interactions in a geothermal Rotliegend/Permo-Carboniferous reservoir (North German Basin). Appl Geochem 69:12–27CrossRefGoogle Scholar
  42. Robertson WJ, Bowman JP, Franzmann PD, Mee BJ (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfatereducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140CrossRefGoogle Scholar
  43. Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and the description of its new species Desulfomicrobium apsheromum gen, nov., sp. nov. Mikrobiologiya 57:514–520Google Scholar
  44. Saadat A, Blöcher G, Francke H, Huenges E, Kranz S, Kupfermann A, Norden B, Regenspurg S (2016) Effizienz und Betriebssicherheit von Energiesystemen mit saisonaler Energiespeicherung in Aquiferen für Stadtquartiere. FKZ 03ESP409A. Abschlussbericht des Teilprojekts “Gesamtsystem“Google Scholar
  45. Sanner B, Kabus F, Seibt P, Bartels J (2005) Underground thermal energy storage for the German Parliament in Berlin, system concept and operational experiences. In Proceedings world geothermal congress, vol 1, pp 1–8Google Scholar
  46. Schneider J, Eggeling L, Hesshaus A (2014) Tiefengrundwassercharakteristik und hydrochemische Untersuchung. In: Bauer M, Freeden W, Jacobi H, Neu T (Hrsg) Handbuch Tiefe Geothermie: Prospektion, Exploration, Realisierung, Nutzung. Springer Spektrum, Berlin, pp 559–594Google Scholar
  47. Schouw A, Leiknes Eide T, Stokke R, Birger Pedersen R, Helene Steen I, Bodtker G (2016) Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 66:1724–1734CrossRefGoogle Scholar
  48. Seelheim F (1880) Methoden zur Bestimmung der Durchlässigkeit des Bodens. Zeitschrift für analytische Chemie 19(1):387–418CrossRefGoogle Scholar
  49. Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75(13):4435–4442CrossRefGoogle Scholar
  50. Stober I, Bucher K (2014) Geothermie. Online-Ressource (online resource), 2. Aufl. Springer Spektrum, Berlin (SpringerLink: Bücher) Google Scholar
  51. Stober I, Wolfgramm M, Birner J (2014) Hydrochemie der Tiefenwässer in Deutschland. Zeitschrift für geologische Wissenschaften 41(42):339–380Google Scholar
  52. Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett shale. Appl Environ Microbiol 77(14):4744–4753CrossRefGoogle Scholar
  53. Takai K, Abe M, Miyazaki M, Koide O, Nunoura T, Imachi H, Inagaki F, Kobayashi T (2013) Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 63:1602–1609CrossRefGoogle Scholar
  54. Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos Trans Am Geophys Union 16(2):519–524CrossRefGoogle Scholar
  55. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982Google Scholar
  56. Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70(8):3709–3726CrossRefGoogle Scholar
  57. Wolfgramm M, Thorwart K, Rauppach K, Brandes J (2011) Zusammensetzung, Herkunft und Genese geothermaler Tiefengrundwässer im Norddeutschen Becken (NDB) und deren Relevanz für die geothermische Nutzung. Zeitschrift für geologische Wissenschaften 39(3–4):173.193Google Scholar
  58. Zhang MY, Fan L, Liu QZ, Song Y, Wei SW, Zhang SL, Wu J (2014) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Rep 32(1):290–302CrossRefGoogle Scholar
  59. Zhu Y, Vieth-Hillebrand A, Wilke FD, Horsfield B (2015) Characterization of water-soluble organic compounds released from black shales and coals. Int J Coal Geol 150:265–275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Simona Regenspurg
    • 1
    Email author
  • Mashal Alawi
    • 1
  • Guido Blöcher
    • 1
  • Maria Börger
    • 1
  • Stefan Kranz
    • 1
  • Ben Norden
    • 1
  • Ali Saadat
    • 1
  • Traugott Scheytt
    • 2
  • Lioba Virchow
    • 2
  • Andrea Vieth-Hillebrand
    • 1
  1. 1.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institut für Angewandte GeowissenschaftenTechnische Universität BerlinBerlinGermany

Personalised recommendations