Advertisement

Iron release in aqueous environment by fresh volcanic ash from Mount Etna (Italy) and Popocatépetl (Mexico) volcanoes

  • Giancarlo Capitani
  • Nobuyoshi Miyajima
  • Roberto Sulpizio
  • Maria D’Addabbo
  • Lucia Galimberti
  • Massimo Guidi
  • Giovanni B. Andreozzi
Original Article
  • 72 Downloads

Abstract

In this study, we performed leaching experiments for timescales of hours-to-months in deionized water on fresh volcanic ash from Mt. Etna (Italy) and Popocatépetl (Mexico) volcanos to monitor Fe release as a function of ash mineral chemistry and size, with the aim of clarifying Fe release mechanisms and eventually evaluating the impact of volcanic ash on marine and lacustrine environments. To define sample mineralogy and Fe speciation, inclusive characterization was obtained by means of XRF, SEM, XRPD, EELS and Mössbauer spectroscopies. For Etna and Popocatépetl samples, glass proportions were quantified at 73 and 40%, Fe2O3 total contents at 11.6–13.2 and 5.8 wt%, and Fe3+/FeTot ratios at 0.33 and 0.23, respectively. Leaching experiments showed that significant amounts of iron, ~ 30 to 150 and ~ 750 nmol g−1 l−1 for pristine Etna and Popocatépetl samples, respectively, are released within the first 30 min as a function of decreasing particle size (from 1 to 0.125 mm). The Popocatépetl sample showed a very sustained Fe release (up to 10 times Etna samples) all along the first week, with lowest values never below 400 nmol g−1 l−1 and a maximum of 1672 nmol g−1 l−1 recorded after 5 days. This sample, being composed of very small particles (average particle size 0.125 mm) with large surface area, likely accumulated large quantities of Fe-bearing sublimates that quickly dissolved during leaching tests, determining high Fe release and local pH decrease (that contributed to release more Fe from the glass) at short timescale (hours-to-days). The fractional Fe solubility (FeS) was 0.004–0.011 and 0.23% for Etna and Popocatépetl samples, respectively, but no correlation was found between Fe released in solution and either ash Fe content, glass/mineral ratio or mineral assemblage. Results obtained suggest that volcanic ash chemistry, mineralogy and particle size assume a relevant role on Fe release mostly in the medium-to-long timescale, while Fe release in the short timescale is dominated by dissolution of surface sublimates (formed by physicochemical processes occurring within the eruption plume and volcanic cloud) and the effects of such a dissolution on the local pH conditions. For all samples, a moderate to sustained Fe release occurred for leaching times comparable with their residence time within the euphotic zone of marine and lacustrine environments (variable from few minutes to few hours), revealing their possible contribution to increase Fe bioavailability.

Keywords

Volcanic ash Tephra Iron speciation Leaching Iron release 

Notes

Acknowledgements

Marco Cantù is acknowledged for collecting XRD powder spectrograms at the University of Milano Bicocca and Mauro Pallara for collecting XRF analyses at the University of Bari. The research was conducted in the framework of the PRIN 2009 project granted to RS: “Study of tephra layers in lacustrine sediments of the ICDP project: Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO). Evaluation of the environmental impact and contributions to chronology of sediments and to volcanic hazard assessment in distal areas”. A university grant (Fondi di Ateneo) from the University of Milano Bicocca to GC is also acknowledged. This article is an outcome of MIUR Project—Dipartimenti di Eccellenza 2018–2022.

Supplementary material

12665_2018_7692_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 19 KB)

References

  1. Andreozzi GB, Bosi F, Longo M (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. Am Mineral 93:658–666CrossRefGoogle Scholar
  2. Andreozzi GB, Pacella A, Corazzari I, Tomatis M, Turci F (2017) Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Sci Rep 7:14696.  https://doi.org/10.1038/s41598-017-14480-z CrossRefGoogle Scholar
  3. Annersten H (1976) New Mössbauer data on iron in potash feldspar. Neues Jahrbuch für Mineralogie 8:337–343Google Scholar
  4. Ayris PM, Delmelle P (2012a) The immediate environmental effects of tephra emission. Bull Volcanol 74:1905–1936CrossRefGoogle Scholar
  5. Ayris PM, Delmelle P (2012b) Volcanic and atmospheric controls on ash iron solubility: a review. Phys Chem Earth A/B/C 45–46:103–112CrossRefGoogle Scholar
  6. Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33(17):L17608CrossRefGoogle Scholar
  7. Bakker L, Lowe DJ, Jongmans AG (1996) A micromorphological study of pedogenic processes in an evolutionary soil sequence formed on Late Quaternary rhyolitic tephra deposits, North Island, New Zealand. Quat Int 34–36:249–261CrossRefGoogle Scholar
  8. Bell JF III, Morris RV, Adams JB (1993) Thermally altered palagonitic tephra: a spectral and process analog to the soil and dust of Mars. JGR Planets 98:3373–3385CrossRefGoogle Scholar
  9. Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940Google Scholar
  10. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80CrossRefGoogle Scholar
  11. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowle AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, La Roche J, Liddicoat M, Ling R, Maldonado MT, McKay RM, Nodder S, Pickmere R, Rintoul S, Safl K, Sutton P, Strzepek R, Tanneberger K, Turner S, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern ocean stimulated by iron fertilization. Nature 407:695–702CrossRefGoogle Scholar
  12. Brantley SL, Chen Y (1995) Chemical weathering rates of pyroxenes and amphiboles. Rev Mineral Geochem 31(1):119–172Google Scholar
  13. Censi P, Randazzo LA, Zuddas P, Saiano F, Aricò P, Andò S, Mazzola S (2010) Trace element behaviour in seawater during pyroclastic Etna’s activity in 2001. Concurrent effects of nutrients and formation of alteration minerals. J Volcanol Geotherm Res 193(1–2):106–116CrossRefGoogle Scholar
  14. Cwiertny DM, Young MA, Grassian VH (2008) Chemistry and photochemistry of mineral dust aerosol. Annu Rev Phys Chem 59:27–51CrossRefGoogle Scholar
  15. D’Addabbo M, Sulpizio R, Guidi G, Capitani G, Mantecca P, Zanchetta G (2015) Ash leachates from some recent eruption of Mt. Etna (Italy) and Popocatépetl (Mexico) volcanoes and their impact on amphibian living freshwater organisms. Biogeosciences 12:7087–7106CrossRefGoogle Scholar
  16. de Hoog JCM, Koetsier GW, Bronto S, Sriwana T, van Bergen MJ (2001) Sulfur and chlorine degassing from primitive arc magmas: temporal changes during the 1982–1963 eruptions of Galunggung (West Java, Indonesia). J Volcanol Geotherm Res 108:55–83CrossRefGoogle Scholar
  17. Delmelle P, Lambert M, Dufrêne Y, Gerin P, Óskarsson N (2007) Gas/aerosol–ash interaction in volcanic plumes: new insights from surface analysis of fine volcanic ash. Earth Planet Sci Lett 259(1–2):159–170CrossRefGoogle Scholar
  18. Duggen S, Croot P, Schacht U, Hoffman L (2007) Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys Res Lett 34:L01612CrossRefGoogle Scholar
  19. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H, Delmelle P, Teschner C (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–844CrossRefGoogle Scholar
  20. Dyar MD, Agresti DG, Schaefer MW, Grant CA, Sklute EC (2006) Mössbauer spectroscopy of Earth and planetary materials. Annu Rev Earth Pl Sc 34:83–125CrossRefGoogle Scholar
  21. Fierro G, Lo Jacono M, Dragone R, Ferraris G, Andreozzi GB, Graziani G (2005) Fe–Zn manganite spinels and their carbonate precursors: preparation, characterization and catalytic activity. Appl Catal B Environ 57:153–165CrossRefGoogle Scholar
  22. Frogner-Kockum PC, Gislason SR, Óskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface waters. Geology 29(6):487–490CrossRefGoogle Scholar
  23. Fubini B, Fenoglio I (2007) Toxic potential of mineral dusts. Elements 3(6):407–414CrossRefGoogle Scholar
  24. Galoisy L, Calas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319CrossRefGoogle Scholar
  25. Gledhill M, Buck KN (2012) The organic complexation of iron in the marine environment: a review. Front Microbiol 3:1–17Google Scholar
  26. Gualtieri AF (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR method. J Appl Crystallogr 33:267–278CrossRefGoogle Scholar
  27. Hamilton JP, Pantano CG, Brantley SL (2000) Dissolution of albite glass and crystal. Geochim Cosmochim Acta 64:2603–2615CrossRefGoogle Scholar
  28. Hamme RC, Webley PW, Crawford WR, Whitney FA, De Grandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower FR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Lockwood D (2010) Volcanic ash fuels anomalous plankton bloom in subartic northeast Pacific. Geophys Res Lett 37:L19604CrossRefGoogle Scholar
  29. Hembury DJ, Palmer MR, Fones GR, Mills RA, Marsh R, Jones MT (2012) Uptake of dissolved oxygen during marine diagenesis of fresh volcanic material. Geochim Cosmochim Acta 84:353–368CrossRefGoogle Scholar
  30. Hill RJ (1991) Expanded use of the Rietveld method in studies of phase abundance in multiphase mixtures. Powder Diffr 6:74–77CrossRefGoogle Scholar
  31. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24CrossRefGoogle Scholar
  32. Horwell CJ, Stannett GW, Andronico D, Bertagnini A, Fenoglio I, Fubini B, Le Blond JS, Williamson BJ (2010) A physico-chemical assessment of the health hazard of Mt. Vesuvius volcanic ash. J Volcanol Geotherm Res 191:222–232CrossRefGoogle Scholar
  33. Jones MT, Gislason SR (2008) Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72(15):3661–3680CrossRefGoogle Scholar
  34. Journet E, Desboeufs KV, Caquineau S, Colin JL (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35:L07805CrossRefGoogle Scholar
  35. Kane AB (1996) Mechanisms of mineral fibre carcinogenesis. In: Kane AB, Boffetta P, Saracci R, Wilburn JD (eds) Mechanisms of fibre carcinogenesis. IARC Scientific Publication n. 140, Lyon, pp 11–34Google Scholar
  36. Kustka AB, Sergio A, Sañudo-Wilhelmy EJ, Capone D, Burns J, Sunda WG (2003) Iron requirements for dinitrogen- and ammonium-supported growth in cultures of trichodesmium (IMS 101): comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnol Oceanogr 48(5):1869–1884CrossRefGoogle Scholar
  37. Lac D (2009) Using the oxidation state of iron plagioclase to evaluate magma oxygen fugacity: a micro-XANES study. Master Thesis, University of Massachusetts Amherst, p 80Google Scholar
  38. Langmann B, Zakšek K, Hort M, Duggen S (2010) Volcanic ash fertilizer for the surface ocean. Atmos Chem Phys 10:3891–3899CrossRefGoogle Scholar
  39. Larese-Casanova P, Scherer MM (2007) Fe(II) sorption on hematite: new insights based on spectroscopic measurements. Environ Sci Technol 41:471–477CrossRefGoogle Scholar
  40. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86–748Google Scholar
  41. Lindenthal A, Langmann B, Pätsch J, Lorkowsky I, Hort M (2013) The ocean response to volcanic iron fertilisation after the eruption of Kasatochi volcano: a regional-scale biogeochemical ocean model stydy. Biogeosciences 10:3715–3729CrossRefGoogle Scholar
  42. Mansfeldt T, Schuth S, Häusler W, Wagner FE, Kaufhold S, Overesch M (2012) Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. J Soils Sediments 12:97–114CrossRefGoogle Scholar
  43. Marianelli P, Sbrana A (1988) Risultati di misure di standard di minerali e di vetri naturali in microanalisi a dispersion di energia. Atti Soc Tosc Sci Nat Mem Serie A 105:57–63Google Scholar
  44. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growths in the north-east Pacific subartic. Nature 331:341–343CrossRefGoogle Scholar
  45. Maters EC, Delmelle P, Bonneville S (2016) Atmospheric processing of volcanic glass: effects on iron solubility and redox speciation. Environ Sci Technol 50:5033–5040CrossRefGoogle Scholar
  46. Maters EC, Delmelle P, Gunnlaugsson HP (2017) Controls on iron mobilisation from volcanic ash at low pH: insights from dissolution experiments and Mössbauer spectroscopy. Chem Geol 449:73–81CrossRefGoogle Scholar
  47. Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218CrossRefGoogle Scholar
  48. Millero FJ, Sotolongo S (1989) The oxidation of Fe(II) with H2O2 in seawater. Geochim Cosmochim Acta 53:1867–1873CrossRefGoogle Scholar
  49. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801CrossRefGoogle Scholar
  50. Naughton JJ, Greenberg VA, Googuel R (1976) Incrustations and fumarolic condensates at Kilauea Volcano, Hawaii: field, drill-hole, and laboratory observations. J Volcanol Geotherm Res 1:149–165CrossRefGoogle Scholar
  51. Nikolaev GS, Borisov AA, Ariskin AA (1996) Calculation of the ferric–ferrous ratio in magmatic melts: testing and additional calibration of empirical equations for various magmatic series. Geochem Int 34:641–649Google Scholar
  52. Nyrow A, Sternemann C, Wilke M, Gordon RA, Mende K, Yavaş H, Simonelli L, Hiraoka N, Sahle CJ, Huotari S, Andreozzi GB, Woodland AB, Tolan M, Tse JS (2014) Iron speciation in minerals and glasses probed by M2/3-edge X-ray Raman scattering spectroscopy. Contrib Mineral Petrol 167:1012CrossRefGoogle Scholar
  53. Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, Óskarsson N, Siebe C, Auer A, Garbe-Schönberg D (2011) Surface ocean iron fertilization: The role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Glob Biogeochem Cycles 25(4):GB4001CrossRefGoogle Scholar
  54. Ooki A, Nishioka J, Ono T, Noriki S (2009) Size dependence of iron solubility of Asian mineral dust particles. J Geophys Res 114:D03202CrossRefGoogle Scholar
  55. Óskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8(2–4):251–266CrossRefGoogle Scholar
  56. Óskarsson N (1981) The chemistry of Icelandic lava incrustations and the latest stages of degassing. J Volcanol Geotherm Res 10:93–111CrossRefGoogle Scholar
  57. Oze C, Solt K (2010) Biodurability of chrysotile and tremolite asbestos in simulated lung and gastric fluids. Am Mineral 95:825–831CrossRefGoogle Scholar
  58. Pacella A, Andreozzi GB, Fournier J, Stievano L, Giantomassi F, Lucarini G, Rippo MR, Pugnaloni A (2012) Iron topochemistry and surface reactivity of amphibole asbestos: relations with in vitro toxicity. Anal Bioanal Chem 402:871–881CrossRefGoogle Scholar
  59. Pacella A, Fantauzzi M, Turci F, Cremisini C, Montereali MR, Nardi E, Atzei D, Rossi A, Andreozzi GB (2014) Dissolution reaction and surface iron speciation of UICC crocidolite in buffered solution at pH 7.4: a combined ICP-OES, XPS and TEM investigation. Geochim Cosmochim Acta 127:221–232CrossRefGoogle Scholar
  60. Pacella A, Fantauzzi M, Turci F, Cremisini C, Montereali MR, Nardi E, Atzei D, Rossi A, Andreozzi GB (2015) Surface alteration mechanism and topochemistry of iron in tremolite asbestos: a step toward understanding the potential hazard of amphibole asbestos. Chem Geol 405:28–38CrossRefGoogle Scholar
  61. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  62. Perinelli C, Bosi F, Andreozzi GB, Conte AM, Armienti P (2014) Geothermometric study of Cr-spinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica). Am Miner 99:839–846CrossRefGoogle Scholar
  63. Reed JSB (1993) Electron microprobe analysis. Cambridge University Press, Cambridge, p 326Google Scholar
  64. Rose WI (1977) Scavenging of volcanic aerosol by ash: atmospheric and volcanological implications. Geology 5(10):621–624CrossRefGoogle Scholar
  65. Rozalen M, Ramos ME, Fiore S, Gervilla F, Huertas FJ (2014) Effect of oxalate and pH on chrysotile dissolution at 25 °C: an experimental study. Am Mineral 99:589–600CrossRefGoogle Scholar
  66. Sarmiento JL (1993) Atmospheric CO2 stalled. Nature 365:697–698CrossRefGoogle Scholar
  67. Schroth AW, Crusius J, Sholkovitz ER, Bostick BC (2009) Iron solubility driven by speciation in dust sources to the ocean. Nat Geosci 2:337–340CrossRefGoogle Scholar
  68. Schuth S, Mansfeldt T (2016) Iron isotope composition of aqueous phases of a lowland environment. Environ Chem 13:89–101CrossRefGoogle Scholar
  69. Smith JV (1974a) Feldspar minerals. I. Crystal structure and physical properties. Springer, Berlin, p 627Google Scholar
  70. Smith JV (1974b) Feldspar minerals. II. Chemical and textural properties. Springer, Berlin, p 690CrossRefGoogle Scholar
  71. Stevens JG, Khasanov AM, Miller JW, Pollak H, Li Z (2005) Mössbauer mineral handbook. Mössbauer effect data center. The University of North Carolina at Asheville, North Carolina, p 636Google Scholar
  72. Stumm W, Furrer G (1987) The dissolution of oxides and aluminum silicates; examples of surface coordination controlled kinetics. In: Stumm W (ed) Aquatic surface chemistry. Wiley Interscience, New York, pp 97–217Google Scholar
  73. Stumm W, Lee GF (1961) Oxygenation of ferrous iron. Ind Eng Chem 53:143–146CrossRefGoogle Scholar
  74. Teutsch N, von Gunten U, Porcelli D, Cirpka OA, Halliday AN (2005) Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69:4175–4185CrossRefGoogle Scholar
  75. van Cappellen E (1990) The parameterless correction method in X-ray-microanalysis. Microscopy Microanal Microstruct 1(1):1–22CrossRefGoogle Scholar
  76. van Cappellen E, Doukhan JC (1994) Quantitative transmission-X-ray microanalysis of ionic compounds. Ultramicroscopy 53(4):343–349CrossRefGoogle Scholar
  77. van Aken PA, Liebscher B (2002) Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Phys Chem Miner 29:188–200CrossRefGoogle Scholar
  78. van Aken PA, Liebscher B, Styrsa VJ (1998) Quantitative determination of iron oxidation states in minerals using Fe L2,3–edge electron energy-loss near-edge structure spectroscopy. Phys Chem Miner 25:323–327CrossRefGoogle Scholar
  79. Watson AJ (1997) Volcanic Fe, CO2, ocean productivity and climate. Nature 385:587–588CrossRefGoogle Scholar
  80. Wells ML (2003) The level of iron enrichment required to initiate diatom blooms in HNLC waters. Mar Chem 82:101–114CrossRefGoogle Scholar
  81. Wiederhold JG, Kraemer SM, Teutsch N, Borer PM, Halliday AN, Kretzschmar R (2006) Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environ Sci Technol 40:3787–3793CrossRefGoogle Scholar
  82. Wolff-Boenisch D, Gislason SR, Oelkers EH (2006) The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta 70(4):858–870CrossRefGoogle Scholar
  83. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72(1):311–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giancarlo Capitani
    • 1
  • Nobuyoshi Miyajima
    • 2
  • Roberto Sulpizio
    • 3
    • 4
  • Maria D’Addabbo
    • 3
  • Lucia Galimberti
    • 1
  • Massimo Guidi
    • 5
  • Giovanni B. Andreozzi
    • 6
    • 7
  1. 1.Dipartimento di Scienze dell’Ambiente e di Scienze della TerraMilanItaly
  2. 2.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  3. 3.Dipartimento di Scienze della Terra e GeoambientaliBariItaly
  4. 4.Istituto per la Dinamica dei Processi Ambientali (IDPA)-CNRMilanItaly
  5. 5.Istituto di Geoscienze e Georisorse (IGG)-CNRPisaItaly
  6. 6.Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
  7. 7.CNR-IGAG, U.O. Roma, c/o Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly

Personalised recommendations