Advertisement

Sulphuric acid geofluid contribution on thermal carbonate coastal springs (Italy)

  • L. E. ZuffianòEmail author
  • M. Polemio
  • R. Laviano
  • G. De Giorgio
  • M. Pallara
  • P. P. Limoni
  • F. Santaloia
Original Article

Abstract

Hypogenic caves, developed by sulphuric acid speleogenesis, are known all over the world among which the Santa Cesarea Terme caves have been included. They are four submerged caves, located along a coastal carbonate sector in Southern Italy and hosting the outflow of coastal springs of thermal mixed waters (from 21 to 33 °C). These waters derive from the mixing of three water end members: the fresh pure groundwater of a wide karstic aquifer, the deep sulphur thermal water and the seawater. This cave system represents an almost unique case of hypogenic sea caves in carbonate environment. The thermal mixed waters have a different effect on the surrounding rocks of the caves, influencing the sulphuric acid speleogenetic process within the whole cave system. To understand the complex and overlapping natural processes acting on the development of these coastal caves, a multidisciplinary study has been carried out. This study has integrated all the data resulting from different methods and technologies, merging morphology, structural geology, hydrogeology, hydrogeochemistry and mineralogy. This multidisciplinary study has allowed to define the main geochemical processes acting within these caves, including the cave development and the formation of the mineral concretions. After the introduction of H2S in the thermal waters, formed by the reduction of sulphates in the sedimentary deposits crossed at depth in the offshore, the oxidation occurs within the caves, producing sulphuric acid. Favoured by upwelling deep-seated thermal flows, this acid dissolves the limestone, with condensation corrosion process that involve replacement of limestone rock with gypsum. This process has resulted to be more active and remarkable within the Gattulla Cave, one of the Santa Cesarea Terme sea caves.

Keywords

Sulphuric acid speleogenesis Carbonate aquifer Thermal springs Coastal aquifer Italy 

Notes

Acknowledgements

The present activity has been performed in the frame of the VIGOR Project, aimed at assessing the geothermal potential and exploring geothermal resources of four regions in southern Italy. VIGOR is part of the activities of the Interregional Programme “Renewable Energies and Energy Savings FESR 2007–2013–Axes I Activity line 1.4 ‘Experimental Actions in Geothermal Energy’. The authors acknowledge the management of VIGOR Project, and in particular: Dr. Piezzo of MiSE-DGENRE (Directorate General for Nuclear Energy, Renewable Energy and Energy Efficiency of the Ministry for Economic Development); Dr. Brugnoli, Director of CNR-DTA (National Research Council of Italy, Department of Sciences of the Earth System and Environmental Technologies); the coordinator, Drs. Manzella from CNR-IGG. Thanks are also due to the whole staff of the Santa Cesarea Terme spa for the availability displayed during the research activities performed for the pilot site of the study. We thank to Mr. Nicola Mongelli and Mrs Rossana Vittoria to their technical support for the SEM-EDS and XRPD analyses. SEM-EDS and XRPD analyses were performed with, respectively, SSD and X’Celerator detectors of “Laboratorio per lo Sviluppo Integrato delle Scienze e delle TEcnologie dei Materiali Avanzati e per dispositivi innovativi (SISTEMA)” of the University of Bari.

Compliance with ethical standards

Conflict of interest

The authors of the paper “Sulphuric acid geofluid contribution on thermal carbonate coastal springs (Italy)” declares that there is no conflict of interest regarding the publication of this paper.

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A., Balkema, RotterdamCrossRefGoogle Scholar
  2. Ardizzone F, Basso A, Casarano D et al (2012) Vigor: Sviluppo Geotermico nella Regione PugliaGoogle Scholar
  3. Audra P, Palmer AN (2015) Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsologica.  https://doi.org/10.3986/ac.v44i3.1960 Google Scholar
  4. Audra P, Hoblea F, Bigot J, Nobecourt J (2007) The role of condensation-corrosion in the thermal speleogenesis: study of a hypogenic sulfidic cave in Aix-les-bains, France. Acta Carsologica 36:185–194Google Scholar
  5. Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. J Hydrol 10:330–368.  https://doi.org/10.1016/0022-1694(70)90222-2 CrossRefGoogle Scholar
  6. Baldassare G, Pagliarulo P, Zuffianò LE (2011) Water composition and minerals equilibria at the Syri i Kalter spring and in the Bistrica river (South Albania). Water Resour 38:662–669.  https://doi.org/10.1134/S0097807811050022 CrossRefGoogle Scholar
  7. Bossio A, Mazzei R, Monteforti B, Salvatorini G (2005) Stratigrafia del Neogene e Quaternario del Salento sud-orientale (con rilevamento geologico alla scala 1:25.000). Geol Romana 38:31–60Google Scholar
  8. Bottrell SH (1993) The Caves and Karst of Xingwen. China Cave Science 20:75–86Google Scholar
  9. Bottrell SH, Crowley S, Self C (2001) Invasion of a karst aquifer by hydrothermal fluids: evidence from stable isotopic compositions of cave mineralization. Geofluids 1:103–121.  https://doi.org/10.1046/j.1468-8123.2001.00008.x CrossRefGoogle Scholar
  10. Calò G, Spizzico M, Tinelli R, Zezza F (1983) Hydrogeological investigations on the area surrounding Santa Cesarea Terme springs (southern Apulia). Geologia Applicata e Idrogeologia 18:129–144Google Scholar
  11. Ciardo B (2005) Genesi e chimismo delle sorgenti sulfuree di Santa Cesarea Terme (Lecce). Tesi di Laurea, Università degli Studi di BariGoogle Scholar
  12. Cotecchia V, Grassi D, Polemio M (2005) Carbonate aquifers in Apulia and seawater intrusion. Giornale di Geologia Applicata 1:219–231.  https://doi.org/10.1474/GGA.2005-01.0-22.0022 Google Scholar
  13. D’Angeli IM, Vattano M, Parise M, De Waele J (2017) The coastal sulfuric acid cave System of Santa Cesarea Terme (Southern Italy). In: Klimchouk A, Palmer N, De Waele AJ, et al. (eds) Hypogene karst regions and caves of the world. Springer, Cham, pp 161–168CrossRefGoogle Scholar
  14. Davis DG (1980) Cave development in the guadalupe mountains (New Mexico). A critical review of recent hypotheses. NSS Bull 42:42–48Google Scholar
  15. De Waele J, Galdenzi S, Madonia G et al (2014) Review on hypogene caves in Italy. In: Hypogene cave morphologies. Karst Waters Special Publication. San Salvador, pp 28–35Google Scholar
  16. De Waele J, Audra P, Madonia G et al (2016) Sulfuric acid speleogenesis (SAS) close to the water table: examples from southern France, Austria, and Sicily. Geomorphology 253:452–467.  https://doi.org/10.1016/j.geomorph.2015.10.019 CrossRefGoogle Scholar
  17. Del Ben A, Mocnik A, Volpi V, Karvelis P (2015) Old domains in the South Adria plate and their relationship with the West Hellenic front. J Geodyn 89:15–28.  https://doi.org/10.1016/j.jog.2015.06.003 CrossRefGoogle Scholar
  18. Dell’Anna L, Laviano R (1987) Penisola Salentina: stato delle conoscenze mineralogiche e geochimiche. In: Quaderni Ricerche Centro Studi Geotecnici D’Ingegneria. Lecce, pp 303–321Google Scholar
  19. Dell’Anna L, Fiore S, Laviano R (1985) The mineralogical, chemical and grain-size features of some clay deposits from Terra d’Otranto (Puglia, Southern Italy). Geologia Applicata e Idrogeologia 20:111–123Google Scholar
  20. Dell’Anna L, Fiore S, Lamaddalena M, Laviano R (1989) Le argille di Terra d’Otranto (Puglia, Italia): caratteristiche mineralogiche, geochimiche e loro possibile utilizzo industriale. Geologia Applicata e Idrogeologia 24:95–118Google Scholar
  21. Dreybrodt W, Gabrovšek F, Perne M (2005) Condensation corrosion: A theoretical approach. Acta Carsologica 34(2):317–348Google Scholar
  22. Egemeier SJ (1981) Cavern development by thermal waters. NSS Bulletin 43:31–51Google Scholar
  23. Gabrieli L (1955) Notizie Storiche di Santa Cesarea Terme (Lecce) e l’opera valorizzatrice di Saverio, SticchiGoogle Scholar
  24. Hill CA (1987) Geology of Carlsbad cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. New Mexico Bureau of Mines Mineral Resources 117:1–150Google Scholar
  25. Hose LD, Pisarowicz JA (1999) Cueva de Villa Luz, Tabasco, Mexico: Reconnaissance study of an active sulfur spring cave and ecosystem. Journal of Cave Karst Studies 61:13–21Google Scholar
  26. Jaboyedoff M, Oppikofer T, Abellán A et al (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28.  https://doi.org/10.1007/s11069-010-9634-2 CrossRefGoogle Scholar
  27. Jones DS, Polerecky L, Galdenzi S et al (2015) Fate of sulfide in the Frasassi cave system and implications for sulfuric acid speleogenesis. Chem Geol 410:21–27.  https://doi.org/10.1016/j.chemgeo.2015.06.002 CrossRefGoogle Scholar
  28. Klimchouk AB (2007) Hypogene speleogenesis. Hydrogeological and morphogenetic perspective. National Cave and Karst Research Institute, CarlsbadGoogle Scholar
  29. Klimchouk A (2009) Morphogenesis of hypogenic caves. Geomorphology 106:100–117.  https://doi.org/10.1016/j.geomorph.2008.09.013 CrossRefGoogle Scholar
  30. Klimchouk AB (2013) Evolution of intrastratal Karst and Caves in Gypsum. In: Treatise on geomorphology. Elsevier, pp 438–450Google Scholar
  31. Maltsev VA, Malishevsky DI (1990) On hydrothermal phases during later stages of the evolution of Cupp Coutunn Cave System, Turkmenia, USSR. The NSS Bulletin 52:95–98Google Scholar
  32. Mocnik A (2008) Metodologie geofisiche integrate per la correlazione tra strutture superficiali e profonde nel Canale di Otranto. Degree Thesis, University of TriesteGoogle Scholar
  33. Morelli F, Cullers RL, Laviano R, Mongelli G (2000) Geochemistry and palaeoenvironmental significance of Upper Cretaceous clay-rich beds from the Peri-Adriatic Apulia Carbonate Platform, southern Italy. Periodico di Mineralogia 69:165–183Google Scholar
  34. Onorato R, Denitto F, Belmonte G (1999) Le grotte costiere del Salento: classificazione, localizzazione e descrizione. Thalassia Salentina 23:67–116Google Scholar
  35. Palmer AN (2013) Sulfuric Acid Caves: Morphology and Evolution. In: Treatise on Geomorphology. Elsevier, pp 241–257Google Scholar
  36. Palmer AN, Palmer MV (2000) Hydrochemical interpretation of cave patterns in the guadalupe mountains, New Mexico. Journal of Cave Karst Studies 62:91–108Google Scholar
  37. Palmer AN (2006) Support for a sulfuric acid origin for caves in the Guadalupe Mountains, New Mexico. In: Land L, Lueth VW, Raatz W et al (eds) Caves and Karst of Southeastern New Mexico. pp 195–202Google Scholar
  38. Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical Modeling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota. Water Resour Res 26:1981–2014.  https://doi.org/10.1029/WR026i009p01981 CrossRefGoogle Scholar
  39. Polyak VJ, Provencio PP (2000) Summary of the timing of sulfuric-acid speleogenesis for Guadalupe Caves based on ages of alunite. Journal of Cave Karst Studies 62:72–74Google Scholar
  40. Pomar L, Mateu-Vicens G, Morsilli M, Brandano M (2014) Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 404:109–132.  https://doi.org/10.1016/j.palaeo.2014.03.023 CrossRefGoogle Scholar
  41. Pouchou JL, Pichoir F (1988) Microbeam analysis. In: Newbury DE (ed) A simplified version of the “PAP”model for matrix corrections in EPMA. San Francisco, pp 315–318Google Scholar
  42. Pouchou J-L, Pichoir F (1991) Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantitation. Springer US, Boston, pp 31–75CrossRefGoogle Scholar
  43. Ricchetti G, Ciaranfi N, Luperto Sinni E et al (1988) Geodinamica ed evoluzione sedimentaria e tettonica dell’Avampaese Apulo. Memorie della Società Geologica Italiana 41:57–82Google Scholar
  44. Romanazzi A, Gentile F, Polemio M (2015) Modelling and management of a Mediterranean karstic coastal aquifer under the effects of seawater intrusion and climate change. Environ Earth Sci 74:115–128.  https://doi.org/10.1007/s12665-015-4423-6 CrossRefGoogle Scholar
  45. Santaloia F, Zuffianò LE, Palladino G et al (2016) Coastal thermal springs in a foreland setting: The Santa Cesarea Terme system (Italy). Geothermics 64:344–361.  https://doi.org/10.1016/j.geothermics.2016.06.013 CrossRefGoogle Scholar
  46. Visintin B (1944) Studio dell’acqua della grotta Gattulla delle Terme demaniali di S. Cesare. Rendiconti Istituto Superiore Sanità VII:2Google Scholar
  47. Wigley TML (1973) The incongruent solution of dolomite. Geochim Cosmochim Acta 37:1397–1402.  https://doi.org/10.1016/0016-7037(73)90072-0 CrossRefGoogle Scholar
  48. Zezza F (1980) Le sorgenti ipotermali solfuree di Santa Cesarea Terme. Azienda di cura e soggiorno e turismo Santa Cesarea Terme. Estratto dalla rivista quadrimestrale di cultura e civiltà salentina “Salentum” - Anno III nn 1–2 – edita dall’E.p.t di LecceGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. E. Zuffianò
    • 1
    Email author
  • M. Polemio
    • 1
  • R. Laviano
    • 2
    • 3
  • G. De Giorgio
    • 1
  • M. Pallara
    • 2
    • 3
  • P. P. Limoni
    • 1
  • F. Santaloia
    • 1
  1. 1.CNR-IRPI, National Research Council-Research Institute for Geo-Hydrological ProtectionBariItaly
  2. 2.Centro Interdipartimentale Laboratorio di Ricerca per la Diagnostica dei Beni CulturaliUniversità degli Studi di Bari Aldo MoroBariItaly
  3. 3.Dipartimento di Scienze della Terra e GeoambientaliUniversità degli Studi di Bari Aldo MoroBariItaly

Personalised recommendations