Advertisement

Variability of satellite-based total aerosols and the relationship with emission, meteorology and landscape in North China during 2000–2016

  • Yao Feng
  • Dongmei Chen
  • Xiaoying Ouyang
  • Xuehong Zhang
Original Article

Abstract

North China has recently experienced a deteriorating air quality featured by high aerosol concentration. Spatiotemporal variability of total aerosols and the relationship with emission, meteorology and landscape are investigated in North China during 2000–2016. Results suggest that total aerosol concentration has significantly (p < 0.05) increased since 2000 and declined after 2011. A rising fraction of small-size anthropogenic aerosols is suggested by the declining trend of aerosol size and the growing consumption of fossil fuels, electricity and vehicles. Increasing anthropogenic emissions, declining natural emissions as well as declining wind speed have contributed 34–73%, 2–52% and 43–61% to the build-up of aerosols. Seasonally, the highest aerosol concentration in summer and the lowest in winter are partly influenced by the distinct seasonal patterns of wind direction, speed and vertical velocity. Spatially, the lower elevation and two land cover types with intense human disturbances have shaped high aerosol concentration with large increasing trends in eastern North China. Additionally, the increasing aerosol concentration has significantly reduced sunshine duration, evapotranspiration (p < 0.01) and diurnal temperature range (p < 0.05), whereas aerosol size greatly influences precipitation (p < 0.05) in North China.

Keywords

Total aerosols Spatiotemporal variability Meteorology Emission Landscape North China 

References

  1. Bilal M, Nichol JE, Spak SN (2017) A new approach for estimation of fine particulate concentrations using satellite aerosol optical depth and binning of meteorological variables. Aerosol Air Qual Res 17:356–367.  https://doi.org/10.4209/aaqr.2016.03.0097 CrossRefGoogle Scholar
  2. Bocquet M, Elbern H, Eskes H et al (2015) Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models. Atmos Chem Phys 15:5325–5358.  https://doi.org/10.5194/acp-15-5325-2015 CrossRefGoogle Scholar
  3. Bréon F-M, Tanré D, Generoso S et al (2002) Aerosol effect on cloud droplet size monitored from satellite. Science 295:834–838.  https://doi.org/10.1126/science.1066434 CrossRefGoogle Scholar
  4. Chin M, Diehl T, Bian H, Kucsera T (2016) Air pollution modeling and its application XXIV. pp 3–10.  https://doi.org/10.1007/978-3-319-24478-5
  5. Di Iorio T, di Sarra A, Sferlazzo DM et al (2009) Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust. J Geophys Res Atmos 114:1–9.  https://doi.org/10.1029/2008JD010593 Google Scholar
  6. Fan J, Yuan T, Comstock JM et al (2009) Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J Geophys Res Atmos 114:1–9.  https://doi.org/10.1029/2009JD012352 Google Scholar
  7. Founda D, Kazadzis S, Mihalopoulos N et al (2016) Long-term visibility variation in Athens (1931–2013): a proxy for local and regional atmospheric aerosol loads. Atmos Chem Phys 16:11219–11236.  https://doi.org/10.5194/acp-16-11219-2016 CrossRefGoogle Scholar
  8. Gao G (2008) The climatic characteristics and change of haze days over China during 1961–2005. Acta Geogr Sin 63:761–768Google Scholar
  9. Georgoulias AK, Alexandri G, Kourtidis KA (2016) Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmos Chem Phys 16:13853–13884.  https://doi.org/10.5194/acp-2016-401 CrossRefGoogle Scholar
  10. Han R, Wang S, Shen W et al (2016) Spatial and temporal variation of haze in China from 1961 to 2012. J Environ Sci.  https://doi.org/10.1016/j.jes.2015.12.033 Google Scholar
  11. Ho KF, Ho SSH, Huang RJ et al (2016) Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China. Atmos Environ 126:162–170.  https://doi.org/10.1016/j.atmosenv.2015.11.055 CrossRefGoogle Scholar
  12. Huang Y, Dickinson RE, Chameides WL (2006) Impact of aerosol indirect effect on surface temperature over East Asia. Proc Natl Acad Sci USA 103:4371–4376.  https://doi.org/10.1073/pnas.0504428103 CrossRefGoogle Scholar
  13. Huang RJ, Zhang Y, Bozzetti C et al (2014) High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218–222.  https://doi.org/10.1038/nature13774 CrossRefGoogle Scholar
  14. Karol Y, Tanré D, Goloub P et al (2013) Airborne sun photometer PLASMA: Concept, measurements, comparison of aerosol extinction vertical profile with lidar. Atmos Meas Tech 6:2383–2389.  https://doi.org/10.5194/amt-6-2383-2013 CrossRefGoogle Scholar
  15. Kaufman YJ, Koren I, Remer LA et al (2005) The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc Natl Acad Sci USA 102:11207–11212.  https://doi.org/10.1073/pnas.0505191102 CrossRefGoogle Scholar
  16. Kim SW, Yoon SC, Kim J, Kim SY (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmos Environ 41:1634–1651.  https://doi.org/10.1016/j.atmosenv.2006.10.044 CrossRefGoogle Scholar
  17. Lamarque JF, Bond TC, Eyring V et al (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos Chem Phys 10:7017–7039.  https://doi.org/10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  18. Lang J, Zhang Y, Zhou Y et al (2017) Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol Air Qual Res 17:412–425.  https://doi.org/10.4209/aaqr.2016.07.0307 CrossRefGoogle Scholar
  19. Li Z, Niu F, Fan J et al (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4:888–894.  https://doi.org/10.1038/ngeo1313 CrossRefGoogle Scholar
  20. Li W, Wang C, Wang H et al (2014) Distribution of atmospheric particulate matter (PM) in rural field, rural village and urban areas of northern China. Environ Pollut 185:134–140.  https://doi.org/10.1016/j.envpol.2013.10.042 CrossRefGoogle Scholar
  21. Liang F, Xia XA (2005) Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann Geophys Eur Geosci Union 23:2425–2432Google Scholar
  22. Luo Y, Lu D, Zhou X, Li W, He Q (2001) Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J Geophys Res Atmos 106(D13):14501–14513.​  https://doi.org/10.1029/2001JD900030  CrossRefGoogle Scholar
  23. Luo Y, Chen J, Zheng X, Zhao TL (2012) Climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Ecol Environ Sci 21:876–883Google Scholar
  24. Luo Y, Zheng X, Zhao T, Chen J (2014) A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int J Climatol 34:863–870.  https://doi.org/10.1002/joc.3728 CrossRefGoogle Scholar
  25. Pan Y, Tian S, Liu D et al (2016) Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium. Environ Sci Technol 50:8049–8056.  https://doi.org/10.1021/acs.est.6b00634 CrossRefGoogle Scholar
  26. Rohde RA, Muller RA (2015) Air pollution in China: mapping of concentrations and sources. PLoS One 10:1–14.  https://doi.org/10.1371/journal.pone.0135749 Google Scholar
  27. Russell PB, Bergstrom RW, Shinozuka Y et al (2010) Absorption angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys Discuss 9:21785–21817.  https://doi.org/10.5194/acpd-9-21785-2009 CrossRefGoogle Scholar
  28. Segura S, Estelles V, Utrillas MP (2012) Validation of MODIS aerosol optical depth over a Mediterranean and coastal urban environment (Valencia, Spain). In: EGU General Assembly Conference Abstracts, vol 14, pp 13206.  https://doi.org/10.1029/2001GL013206
  29. Song L-C, Rong G, Ying L, Guo-Fu W (2014) Analysis of China’s Haze Days in the winter half-year and the climatic background during 1961–2012. Adv Clim Change Res 5:1–6.  https://doi.org/10.3724/SP.J.1248.2014.001 CrossRefGoogle Scholar
  30. Soni K, Parmar KS, Kapoor S, Kumar N (2016) Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Sci Total Environ 553:258–265.  https://doi.org/10.1016/j.scitotenv.2016.02.075 CrossRefGoogle Scholar
  31. Soni M, Payra S, Verma S (2018) Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters. Atmos Pollut Res.  https://doi.org/10.1016/j.apr.2018.03.001 Google Scholar
  32. Tai APK, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos Environ 44:3976–3984.  https://doi.org/10.1016/j.atmosenv.2010.06.060 CrossRefGoogle Scholar
  33. Tian J, Chen D (2010) Spectral, spatial, and temporal sensitivity of correlating MODIS aerosol optical depth with ground-based fine particulate matter (PM2. 5) across southern Ontario. Can J Remote Sens 36:119–128.  https://doi.org/10.5589/m10-033 CrossRefGoogle Scholar
  34. van Donkelaar A, Martin RV, Brauer M et al (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ Health Perspect 118:847–855.  https://doi.org/10.1289/ehp.0901623 CrossRefGoogle Scholar
  35. Wu Y, Guo J, Zhang X et al (2012) Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Sci Total Environ 433:20–30.  https://doi.org/10.1016/j.scitotenv.2012.06.033 CrossRefGoogle Scholar
  36. Xia Hong-Bin C, Pu-Cai W et al (2005) Aerosol properties and their spatial and temporal variations over North China in spring 2001. Tellus B 57:28–39.  https://doi.org/10.1111/j.1600-0889.2005.00126.x CrossRefGoogle Scholar
  37. Xia X, Li Z, Wang P et al (2008) Analysis of relationships between ultraviolet radiation (295–385 nm) and aerosols as well as shortwave radiation in North China Plain. Ann Geophys.  https://doi.org/10.5194/angeo-26-2043-2008 Google Scholar
  38. Xie Y, Wang Y, Zhang K et al (2015) Daily estimation of ground-level PM2.5 concentrations over Beijing using 3 km resolution MODIS AOD. Environ Sci Technol 49:12280–12288.  https://doi.org/10.1021/acs.est.5b01413 CrossRefGoogle Scholar
  39. Xin J, Wang Y, Li Z et al (2007) Aerosol optical depth (AOD) and ??ngstr??m exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005. J Geophys Res Atmos.  https://doi.org/10.1029/2006JD007075 Google Scholar
  40. Xin J, Zhang Q, Wang L et al (2014) The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmos Res 138:179–188.  https://doi.org/10.1016/j.atmosres.2013.11.001 CrossRefGoogle Scholar
  41. Yang J, Duan K, Kang S et al (2016) Potential feedback between aerosols and meteorological conditions in a heavy pollution event over the Tibetan Plateau and Indo-Gangetic Plain. Clim Dyn.  https://doi.org/10.1007/s00382-016-3240-2 Google Scholar
  42. Zang Z, Wang W, You W et al (2017) Estimating ground-level PM2.5concentrations in Beijing, China using aerosol optical depth and parameters of the temperature inversion layer. Sci Total Environ 575:1219–1227.  https://doi.org/10.1016/j.scitotenv.2016.09.186 CrossRefGoogle Scholar
  43. Zhang Y, Li Z (2015) Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens Environ.  https://doi.org/10.1016/j.rse.2015.02.005 Google Scholar
  44. Zhang Y, Song C, Zhang K (2014) Effects of land-use/land-cover and climate changes on terrestrial net primary productivity in the Yangtze River Basin, China from 2001 to 2010. J Geophys Res Biogeosci.  https://doi.org/10.1002/2014JG002616.Received Google Scholar
  45. Zhou YM, Zhao XY (2017) Correlation analysis between PM2.5 Concentration and Meteorological factors in Beijing Area. Acta Scientiarun Naturalium Universitatis Pekinensis 53:111–124.  https://doi.org/10.13209/j.0479-8023.2017.002 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geography and PlanningQueen’s UniversityKingstonCanada
  2. 2.State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of SciencesBeijingChina
  3. 3.School of Geography and Remote SensingNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations