Advertisement

A local natural background level concept to improve the natural background level: a case study on the drainage basin of the Venetian Lagoon in Northeastern Italy

  • Nico Dalla Libera
  • Paolo FabbriEmail author
  • Leonardo Mason
  • Leonardo Piccinini
  • Marco Pola
Thematic Issue
Part of the following topical collections:
  1. Learning from spatial data: unveiling the geo-environment through quantitative approaches

Abstract

This study analyzes a problem related to the definition of a natural background level (NBL) for naturally occurring contaminants. Specifically, it considers the definition of an arsenic NBL in groundwater because arsenic in alluvial aquifers is a worldwide problem that causes issues in human health. Currently, the European Union (through the BRIDGE project) has suggested several methods to estimate NBLs based on the quantity and quality of the available data, providing a unique NBL value for an investigated study area. This study suggests an improvement of the NBL concept by introducing the local NBL (LNBL). LNBLs are estimated considering an indicator geostatistical approach, which takes into account both the spatial distribution of arsenic and the geochemical relationships occurring inside the aquifer. The LNBL concept aims to provide detailed spatial information of the natural background level and prevents one from defining uncontaminated water sources as contaminated water sources, and vice versa. In this study, an application of the LNBL in the drainage basin of the Venetian Lagoon is proposed.

Keywords

Natural background level (NBL) Local NBL (LNBL) Indicator cokriging (ICK) Water management Drainage basin of the Venetian Lagoon (DBVL) 

Notes

Acknowledgements

This work was funded by the Venice Province (Project “IDRO”, grant given to P. Fabbri). We thank the ARPAV agency, in particular the internal water observatory, for sharing their data concerning arsenic groundwater contamination in the DBVL.

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

The authors declare no competing financial interest.

References

  1. Adhikary PP, Dash CJ, Bej R, Chandrasekharan H (2011) Indicator and probability kriging methods for delineating Cu, Fe, and Mn contamination in groundwater of Najafgarh Block, Delhi, India. Environ Monit Assess 176:663–676.  https://doi.org/10.1007/s10661-010-1611-4 CrossRefGoogle Scholar
  2. APAT (2006) Handbook for environmental investigation upon contaminated sites. Handbooks and guidelines (in Italian). I.G.E.R. srl, RomaGoogle Scholar
  3. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DCGoogle Scholar
  4. ARPAV (2014) ALiNa – Analysis of the Natural Background Level for some compounds within the groundwater of the shallow aquifer in the Drainage Basin to the Venice Lagoon (Brenta river alluvial system) – Report and data presentation (in Italian)Google Scholar
  5. Baalousha H (2010) Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga Plains, New Zealand. Agric Water Manag 97:240–246.  https://doi.org/10.1016/j.agwat.2009.09.013 CrossRefGoogle Scholar
  6. Bartolucci E, Bussettini M, Calace N, D’Aprile L, Fratini M, Guerra M, Marangio L, Pirani G (2009) Guidelines for defining the Natural Background Values of inorganic substances in groundwater, ISPRA report (in Italian)Google Scholar
  7. Bauer M, Blodau C (2006) Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ 354:179–190.  https://doi.org/10.1016/j.scitotenv.2005.01.027 CrossRefGoogle Scholar
  8. Baviskar S, Choudhury R, Mahanta C (2015) Dissolved and solid-phase arsenic fate in an arsenic-enriched aquifer in the river Brahmaputra alluvial plain. Environ Monit Assess 187:93.  https://doi.org/10.1007/s10661-015-4277-0 CrossRefGoogle Scholar
  9. Biswas A, Gustafsson JP, Neidhardt H et al (2014) Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res 55:30–39.  https://doi.org/10.1016/j.watres.2014.02.002 CrossRefGoogle Scholar
  10. Bivand RS, Pebesma EJ, Gomez-Rubio V (2009) Applied spatial data analysis wit R. Springer, BerlinGoogle Scholar
  11. Bondesan A, Meneghel M (2004) Geomorphology of the Venice Province (in Italian). Esedra, PadovaGoogle Scholar
  12. Cambruzzi T, Conchetto E, Fabbri P, Marcolongo E, Rosignoli A, Zangheri P (2009) Underground water resources in the Venetian central plains. Rend Online della Soc Geol Ital 6:127–128Google Scholar
  13. Carraro A, Fabbri P, Giaretta A et al (2013) Arsenic anomalies in shallow Venetian Plain (Northeast Italy) groundwater. Environ Earth Sci 70:3067–3084.  https://doi.org/10.1007/s12665-013-2367-2 CrossRefGoogle Scholar
  14. Carraro A, Fabbri P, Giaretta A et al (2015) Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy). Sci Total Environ 532:581–594.  https://doi.org/10.1016/j.scitotenv.2015.06.003 CrossRefGoogle Scholar
  15. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836.  https://doi.org/10.2307/2286407 CrossRefGoogle Scholar
  16. Cleveland WS, Mcgill R (1985) We have studied the elementary graphical perception and graphical methods for analyzing scientific data. Am Assoc Adv Sci 229:828–833.  https://doi.org/10.1126/science.229.4716.828 Google Scholar
  17. Coetsiers M, Blaser P, Martens K, Walraevens K (2009) Natural background levels and threshold values for groundwater in fluvial Pleistocene and Tertiary marine aquifers in Flanders, Belgium. Environ Geol 57:1155–1168.  https://doi.org/10.1007/s00254-008-1412-z CrossRefGoogle Scholar
  18. Critto A, Carlon C, Marcomini A (2003) Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging. Environ Pollut 122:235–244.  https://doi.org/10.1016/S0269-7491(02)00296-8 CrossRefGoogle Scholar
  19. Dal Prà A, Fabbri P, Bortoletto C (1992) The artesian hydrogeological system in the central Venetian plain between Treviso and the River Piave and its exploitation. Memorie Sci Geol 44:152–170Google Scholar
  20. Dalla Libera N, Fabbri P, Piccinini L et al (2016) Natural Arsenic in groundwater in the drainage basin to the Venice lagoon (Brenta Plain, NE Italy): the organic matter’s role. Rend Online Della Soc Geol Ital 41:30–33.  https://doi.org/10.3301/ROL.2016.85 CrossRefGoogle Scholar
  21. Dalla Libera N, Fabbri P, Mason L et al (2017) Geostatistics as a tool to improve the natural background level definition: an application in groundwater. Sci Total Environ 598:330–340.  https://doi.org/10.1016/j.scitotenv.2017.04.018 CrossRefGoogle Scholar
  22. Ducci D, Condesso MT, Melo D et al (2016) Science of the total environment combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci Total Environ 569–570:569–584.  https://doi.org/10.1016/j.scitotenv.2016.06.184 CrossRefGoogle Scholar
  23. Elumalai V, Brindha K, Sithole B, Lakshmanan E (2017) Spatial interpolation methods and geostatistics for mapping groundwater contamination in a coastal area. Environ Sci Pollut Res 24:11601–11617.  https://doi.org/10.1007/s11356-017-8681-6 CrossRefGoogle Scholar
  24. Fabbri P (2001) Probabilistic assessment of temperature in the Euganean geothermal area (Veneto Region, NE Italy). Math Geol 6:745–760CrossRefGoogle Scholar
  25. Fabbri P, Piccinini L (2013) Assessing transmissivity from specific capacity in an alluvial aquifer in the middle Venetian plain (NE Italy). Water Sci Technol 67:2000–2008.  https://doi.org/10.2166/wst.2013.074 CrossRefGoogle Scholar
  26. Fabbri P, Trevisani S (2005) A geostatistical simulation approach to a pollution case in Northeastern Italy. Math Geol 37:569–586.  https://doi.org/10.1007/s11004-005-7307-6 CrossRefGoogle Scholar
  27. Fabbri P, Ferronato A, Zangheri P (1993) A case of groundwater contamination by organo-chlorine compounds. Hydrogeologie 3:207–215Google Scholar
  28. Fabbri P, Gaetan C, Zangheri P (2011) Transfer function-noise modelling of an aquifer system in NE Italy. Hydrol Process 25:194–206.  https://doi.org/10.1002/hyp.7832 CrossRefGoogle Scholar
  29. Fabbri P, Piccinini L, Marcolongo E, Pola M, Conchetto E, Zangheri P (2016) Does a change of irrigation technique impact on groundwater resources? A case study in Northeastern Italy. Environ Sci Policy 63:63–75CrossRefGoogle Scholar
  30. Fontana A, Mozzi P, Bondesan A (2004) The geomorphological evolution of the Venetian-Friulian plain (in Italian). In: Bondesan A., Meneghel M (eds) Geomorphology of the Venice Province. Esedra, Padova. pp 113–138Google Scholar
  31. Fontana A, Mozzi P, Bondesan A (2008) Alluvial megafans in the Venetian–Friulian Plain (northeastern Italy): evidence of sedimentary and erosive phases during Late Pleistocene and Holocene. Quat Int 189:71–90CrossRefGoogle Scholar
  32. Goovaerts P (1997) Geostatistics for natural resource evaluation. Oxford University Press, New York, 483 ppGoogle Scholar
  33. Gotway C, Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Hydrol Anal Interpret 4:1–524.  https://doi.org/10.2307/1269385 Google Scholar
  34. GWD (2006) Groundwater Directive 2006/118/CE, Directive of the European Parliament and of the Council on the protection of groundwater against pollution and deterioration, OJ L372, 27/12/ 2006, pp 19–31Google Scholar
  35. Herath I, Vithanage M, Bundschuh J et al (2016) Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Curr Pollut Reports 2:68–89.  https://doi.org/10.1007/s40726-016-0028-2 CrossRefGoogle Scholar
  36. Hinsby K, Condesso de Melo MT, Dahl M (2008) European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health☆. Sci Total Environ 401:1–20.  https://doi.org/10.1016/j.scitotenv.2008.03.018 CrossRefGoogle Scholar
  37. Journel AG (1983) Nonparametric estimation of spatial distribution. Math Geol 15(3):445–468CrossRefGoogle Scholar
  38. Journel AG, Huijbregts ChJ (1978) Mining geostatistics. Academic Press, LondonGoogle Scholar
  39. Journel AG (1982) The indicator approach to estimation of spatial distributions. In: Johnson TB et al (eds) Proceedings of the 17th. APCOM symposiumGoogle Scholar
  40. Lu P, Zhu C (2011) Arsenic Eh-pH diagrams at 25 °C and 1 bar. Environ Earth Sci 62:1673–1683.  https://doi.org/10.1007/s12665-010-0652-x CrossRefGoogle Scholar
  41. Mandal B (2002) Arsenic round the world: a review. Talanta 58:201–235.  https://doi.org/10.1016/S0039-9140(02)00268-0 CrossRefGoogle Scholar
  42. McArthur JM, Ravenscroft P, Safiulla S, Thirlwall MF (2001) Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resour Res 37:109–117.  https://doi.org/10.1029/2000WR900270 CrossRefGoogle Scholar
  43. Molinari A, Guadagnini L, Marcaccio M, Guadagnini A (2012) Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Sci Total Environ 425:9–19.  https://doi.org/10.1016/j.scitotenv.2012.03.015 CrossRefGoogle Scholar
  44. Molinari A, Guadagnini L, Marcaccio M et al (2013) Arsenic release from deep natural solid matrices under experimentally controlled redox conditions. Sci Total Environ 444:231–240.  https://doi.org/10.1016/j.scitotenv.2012.11.093 CrossRefGoogle Scholar
  45. Molinari A, Ayora C, Marcaccio M et al (2014) Geochemical modeling of arsenic release from a deep natural solid matrix under alternated redox conditions. Environ Sci Pollut Res 21:1628–1637.  https://doi.org/10.1007/s11356-013-2054-6 CrossRefGoogle Scholar
  46. Molinari A, Guadagnini L, Marcaccio M, Guadagnini A (2015) Arsenic fractioning in natural solid matrices sampled in a deep groundwater body. Geoderma 247–248:88–96.  https://doi.org/10.1016/j.geoderma.2015.02.011 CrossRefGoogle Scholar
  47. Mozzi P, Bini C, Zilocchi L, Beccatini R, Mariotti Lippi M (2003) Stratigraphy, palaeopedology and palynology of late Pleistocene and Holocene deposits in the landward sector of the lagoon of Venice (Italy), in relation to Caranto level. Il Quat 16(1 bis):pag. 193–210Google Scholar
  48. Müller D, Blum A, Hart A, Hookey J, Kunkel R, Scheidleder A, Tomlin C, Wendland F (2006) Final proposal for methodology to setup groundwater threshold values in Europe, deliverable D18. BRIDGE project. http://www.wfd-bridge.net
  49. Nickson RT, Mcarthur JM, Ravenscroft P et al (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413.  https://doi.org/10.1016/S0883-2927(99)00086-4 CrossRefGoogle Scholar
  50. Ohmer M, Liesch T, Goeppert N, Goldscheider N (2017) On the optimal selection of interpolation methods for groundwater contouring: an example of propagation of uncertainty regarding inter-aquifer exchange. Adv Water Resour 109:121–132.  https://doi.org/10.1016/j.advwatres.2017.08.016 CrossRefGoogle Scholar
  51. Pauwels H, Müller D, Griffioen J et al (2007) BRIDGE—background criteria for the identification of groundwaterGoogle Scholar
  52. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691.  https://doi.org/10.1016/j.cageo.2004.03.012 CrossRefGoogle Scholar
  53. Pebesma EJ, de Kwaadsteniet JW (1997) Mapping groundwater quality in the Netherlands. J Hydrol 200:364–386.  https://doi.org/10.1016/S0022-1694(97)00027-9 CrossRefGoogle Scholar
  54. Piccinini L, Fabbri P, Pola M et al (2015) Numerical modeling to well-head protection area delineation, an example in Veneto Region (NE Italy). Rend Online Della Soc Geol Italy 35:232–235.  https://doi.org/10.3301/ROL.2015.108 CrossRefGoogle Scholar
  55. Piccinini L, Fabbri P, Pola M (2016) Point dilution tests to calculate groundwater velocity, an example in a porous aquifer in NE Italy. Hydrol Sci J.  https://doi.org/10.1080/02626667.2015.1036756
  56. Piccinini L, Fabbri P, Pola M, Marcolongo E (2017) An example of aquifer heterogeneity simulation to modeling well- head protection areas. Ital J Eng Geol Environ Special Issue 103–115Google Scholar
  57. Preziosi E, Giuliano G, Vivona R (2010) Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: a methodological case study in Central Italy. Environ Earth Sci 61:885–897.  https://doi.org/10.1007/s12665-009-0404-y CrossRefGoogle Scholar
  58. R Core Team (2017) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/
  59. Reimann C, Garrett RG (2005) Geochemical background: concept and reality. Sci Total Environ 350:12–27.  https://doi.org/10.1016/j.scitotenv.2005.01.047 CrossRefGoogle Scholar
  60. Rotiroti M, Fumagalli L (2013) Derivation of preliminary natural background levels for naturally Mn, Fe, As and NH4 + rich groundwater: the case study of Cremona area (Northern Italy). Rend Online Soc Geol Ital 24:284–286Google Scholar
  61. Rotiroti M, Sacchi E, Fumagalli L, Bonomi T (2014) Origin of arsenic in groundwater from the multilayer aquifer in Cremona (Northern Italy). Environ Sci Technol 48:5395–5403.  https://doi.org/10.1021/es405805v CrossRefGoogle Scholar
  62. Rotiroti M, Fumagalli L, Frigerio MC et al (2015) Natural background levels and threshold values of selected species in the alluvial aquifers in the Aosta Valley Region (N Italy). Rend online della Soc Geol Ital 35:256–259.  https://doi.org/10.3301/ROL.2015.114 CrossRefGoogle Scholar
  63. Rowland HAL, Pederick RL, Polya DA et al (2007) The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers. Cambodia Geobiol 5:281–292.  https://doi.org/10.1111/j.1472-4669.2007.00100.x CrossRefGoogle Scholar
  64. Shand P, Edmunds WM, Lawrence AR et al (2007) The natural (baseline) quality of groundwater in England and Wales. BGS Res Rep RR/07/06 72Google Scholar
  65. Sollitto D, Romic M, Castrignanò A et al (2010) Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. CATENA 80:182–194.  https://doi.org/10.1016/j.catena.2009.11.005 CrossRefGoogle Scholar
  66. Takeno N (2005) Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases. Natl Inst Adv Ind Sci Technol Tokyo 285Google Scholar
  67. Trevisani S, Fabbri P (2010) Geostatistical modeling of a heterogeneous site bordering the Venice lagoon, Italy. Ground Water 48:614–623.  https://doi.org/10.1111/j.1745-6584.2009.00632.x CrossRefGoogle Scholar
  68. Ungaro F, Ragazzi F, Cappellin R, Giandon P (2008) Arsenic concentration in the soils of the Brenta Plain (Northern Italy): mapping the probability of exceeding contamination thresholds. J Geochemical Explor 96:117–131.  https://doi.org/10.1016/j.gexplo.2007.03.006 CrossRefGoogle Scholar
  69. Vorlicek PA, Antonelli R, Fabbri P, Rausch R (2004) Quantitative hydrogeological studies of the Treviso alluvial plain, NE Italy. Q J Eng Geol Hydrogeol 37:23–29.  https://doi.org/10.1144/0036-9276/02-006 CrossRefGoogle Scholar
  70. Wendland F, Berthold G, Blum A et al (2008a) Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination 226:160–168.  https://doi.org/10.1016/j.desal.2007.01.240 CrossRefGoogle Scholar
  71. Wendland F, Blum A, Coetsiers M et al (2008b) European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ Geol 55:77–85.  https://doi.org/10.1007/s00254-007-0966-5 CrossRefGoogle Scholar
  72. WFD (2000) European Parliament and Council, 2000. Directive 2000/60/EC establishing a framework for community action in the field of water policy, Brussels, Belgium, October 23, 2000Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of PadovaPaduaItaly
  2. 2.ARPAV, Department of VeniceMestreItaly

Personalised recommendations