Advertisement

Salt weathering in granitoids: an overview on the controlling factors

  • Luís SousaEmail author
  • Siegfried Siegesmund
  • Wanja Wedekind
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

Historically granite is one of the most applied building materials worldwide. Building stones should accomplish several properties required by different testing materials standards. Salt weathering affects the aesthetical properties of the stones and eventually diminish their durability. The use of weathered granites has increased in the last several decades, but their behavior under adverse environmental conditions requires continued investigation. The use of salt for the prevention of ice formation in colder climates can have harmful consequences on high-porosity stones. Twenty-eight different stones, mostly granitoids, all of them often used as dimensional building stones, were subjected to the salt bursting test. The porosity and the pore network are important parameters in salt weathering; therefore, the pore radii distribution and capillary water uptake were measured. The capillary pores and related porosity are the main factors controlling the behavior of the studied stones under salt action. However, the pore radii size and distribution also plays an important role. In some cases, the salt action is only visible after a high number of test cycles, thus making the actual salt test standards unrealistic.

Keywords

Salt weathering Granite Pore radii distribution 

Notes

Acknowledgements

This work was supported by the DAAD (Az. 57213019) and CRUP (Project A-50/16). The authors gratefully acknowledge Amanda Ricardo and Christopher Pötzl for their help in the laboratory work.

References

  1. Abad SVANK, Tugrul A, Gokceoglu C, Armaghani DJ (2016) Characteristics of weathering zones of granitic rocks in Malaysia for geotechnical engineering design. Eng Geol 200:94–103.  https://doi.org/10.1016/j.enggeo.2015.12.006 CrossRefGoogle Scholar
  2. Alonso FJ, Vázquez P, Esbert RM, Ordaz J (2008) Ornamental granite durability: evaluation of damage caused by salt crystallization test. Mater Constr 58(289–290):191–201Google Scholar
  3. Angeli M, Bigas J-P, Benavente D, Menendez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213.  https://doi.org/10.1007/s00254-006-0474-z CrossRefGoogle Scholar
  4. Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80:61–164.  https://doi.org/10.2138/rmg.2015.80.04 CrossRefGoogle Scholar
  5. Arıkan F, Ulusay R, Aydın N (2007) Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ 66:415–430.  https://doi.org/10.1007/s10064-007-0087-0 CrossRefGoogle Scholar
  6. Barbera G, Barone G, Crupi V, Longo F, Maisano G, Majolino D, Mazzoleni P, Raneri S, Teixeira J, Venut V (2014) A multi-technique approach for the determination of the porous structure of building stone. Eur J Mineral 26:189–198.  https://doi.org/10.1127/0935-1221/2014/0026-2355 CrossRefGoogle Scholar
  7. Begonha AJS (1997) Meteorização do granito e deterioração da pedra em monumentos e edifícios da cidade do Porto. PhD Thesis, University of MinhoGoogle Scholar
  8. Begonha A (2009) Mineralogical study of the deterioration of granite stones of two Portuguese churches and characterization of the salt solutions in the porous network by the presence of diatoms. Mater Charact 60:621–635.  https://doi.org/10.1016/j.matchar.2008.12.019 CrossRefGoogle Scholar
  9. Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordóñez S (2004a) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544.  https://doi.org/10.1016/j.jcrysgro.2003.09.004 CrossRefGoogle Scholar
  10. Benavente D, García del Cura MA, Fort R, Sánchez-Moral S, Ordóñez S (2004b) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127.  https://doi.org/10.1016/j.enggeo.2004.03.005 CrossRefGoogle Scholar
  11. Berrezueta E, Kovacs T, Luquot L (2017) Qualitative and quantitative changes of carbonate rocks exposed to SC CO2 (Basque-Cantabrian Basin, northern Spain). Appl Sci 7:1124.  https://doi.org/10.3390/app7111124 CrossRefGoogle Scholar
  12. Braga R, Peddis F, Perondi C (2012) Yellowing of a white granite pavement in urban environment: the Fe-rich patina of Piazza Cavalli, Piacenza (Italy). Periodico Mineral 81(3):345–357.  https://doi.org/10.2451/2012PM0020 Google Scholar
  13. Bré JMO (2008) Capela do Senhor da Pedra: Diagnóstico e Proposta de Tratamento da Pedra. Master Thesis, Instituto Superior de Engenharia do PortoGoogle Scholar
  14. Buj O, Gisbert J (2010) Influence of pore morphology on the durability of sedimentary building stones from Aragon (Spain) subjected to standard salt decay tests. Environ Earth Sci 61:1327–1336.  https://doi.org/10.1007/s12665-010-0451-4 CrossRefGoogle Scholar
  15. Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, Van Grieken R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179CrossRefGoogle Scholar
  16. Caruso F, Flatt RJ (2012) Measuring crystallization pressure: can the Correns’ experiment be repeated? In: Proceedings of 12th international congress on the deterioration and conservation of stone. Columbia University, New YorkGoogle Scholar
  17. Çelik MY, Kaçmaz AU (2016) The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environ Earth Sci 75:307.  https://doi.org/10.1007/s12665-015-5132-x CrossRefGoogle Scholar
  18. Ceryan S (2015) New weathering indices for evaluating durability and weathering characterization of crystalline rock material: a case study from NE Turkey. J Afr Earth Sc 103:54–64.  https://doi.org/10.1016/j.jafrearsci.2014.12.005 CrossRefGoogle Scholar
  19. Coletti C, Cultrone G, Maritana L, Mazzoli C (2016) Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact 121:82–92.  https://doi.org/10.1016/j.matchar.2016.09.024 CrossRefGoogle Scholar
  20. Comite V, Álvarez de Buergo M, Barca D, Belfiore CM, Bonazza A, La Russa a MF, Pezzino A, Randazzo L, Ruffolo SA (2017) Damage monitoring on carbonate stones: field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr Build Mater 152:907–922.  https://doi.org/10.1016/j.conbuildmat.2017.07.048 CrossRefGoogle Scholar
  21. Correns CW, Steinborn W (1939) Experiment zur Messung und Erklärung der sogenannten Kristallisationskraft. Z Krist 37:228–238Google Scholar
  22. Dultz S, Simonyan AV, Pastrana J, Behrens H, Plötze M, Rath T (2013) Implications of pore space characteristics on diffusive transport in basalts and granites. Environ Earth Sci 69:969–985.  https://doi.org/10.1007/s12665-012-1981-8 CrossRefGoogle Scholar
  23. Eslami J, Grgic D, Hoxha D (2010) Estimation of the damage of a porous limestone from continuous (P- and S-) wave velocity measurements under uniaxial loading and different hydrous conditions. Geophys J Int 183:1362–1375.  https://doi.org/10.1111/j.1365-246X.2010.04801.x CrossRefGoogle Scholar
  24. Espinosa-Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56:605–621.  https://doi.org/10.1007/s00254-008-1441-7 CrossRefGoogle Scholar
  25. Espinosa-Marzal RM, Scherer GW (2013) Impact of in-pore salt crystallization on transport properties. Environ Earth Sci 69:2657–2669.  https://doi.org/10.1007/s12665-012-2087-z CrossRefGoogle Scholar
  26. Espinosa-Marzal RM, Hamilton A, McNall M, Whitaker K, Scherer GW (2011) The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J Mater Res 26(12):1472–1481.  https://doi.org/10.1557/jmr.2011.137 CrossRefGoogle Scholar
  27. Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2013) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Heritage 14:365–376.  https://doi.org/10.1016/j.culher.2012.09.004 CrossRefGoogle Scholar
  28. Feijoo J, Nóvoa XR, Rivas T (2017) Electrokinetic treatment to increase bearing capacity and durability of a granite. Mater Struct 50:251.  https://doi.org/10.1617/s11527-017-1123-6 CrossRefGoogle Scholar
  29. Flatt RJ, Mohamed NA, Caruso F, Derluyn H, Desarnaud J, Lubelli B, Espinosa-Marzal RM, Pel L, Rodriguez-Navarro C, Scherer GW, Shahidzadeh N, Steiger M (2017) Predicting salt damage in practice: a theoretical insight into laboratory tests. RILEM Tech Lett 2:108–118.  https://doi.org/10.21809/rilemtechlett.2017.41 CrossRefGoogle Scholar
  30. Forestieri G, Freire-Lista DM, Francesco AM, Pontea M, Fort R (2017) Strength anisotropy in building granites. Int J Architectural Heritage 11:8.  https://doi.org/10.1080/15583058.2017.1354096 Google Scholar
  31. Freire-Lista DM, Fort R (2017) Exfoliation microcracks in building granite. Implications for anisotropy. Eng Geol 220:85–93.  https://doi.org/10.1016/j.enggeo.2017.01.027 CrossRefGoogle Scholar
  32. Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ Earth Sci 63:1799–1822.  https://doi.org/10.1007/s12665-011-1077-x CrossRefGoogle Scholar
  33. Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten Cathedrals. Environ Earth Sci 69(4):1095–1124.  https://doi.org/10.1007/s12665-012-2161-6 CrossRefGoogle Scholar
  34. Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Verlag W Ernest & Sohn, BerlinGoogle Scholar
  35. Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Angkor Monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes. J Archaeol Sci 33:1541–1551.  https://doi.org/10.1016/j.jas.2006.01.018 CrossRefGoogle Scholar
  36. ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. English–French version. ICOMOS Documentation Centre, ParisGoogle Scholar
  37. Karagiannis N, Karoglou M, Bakolas A, Moropoulou A (2016) Building materials capillary rise coefficient: concepts, determination and parameters involved. In: Delgado J (ed) New approaches to building pathology and durability. Building pathology and rehabilitation, vol 6. Springer, SingaporeGoogle Scholar
  38. Khanlar GR, Naseri F (2016) Investigation of physical deterioration of Malayer granitic rocks using a new weathering coefficient (Kr4). Environ Earth Sci 75:414.  https://doi.org/10.1007/s12665-015-5046-7 CrossRefGoogle Scholar
  39. La Russa MF, Ruffolo SA, Belfiore CM, Aloise P, Randazzo L, Rovella N, Pezzino A, Montana G (2013) Study of the effects of salt crystallization on degradation of limestone rocks. Periodico Mineral 82(1):113–127.  https://doi.org/10.2451/2013PM0007 Google Scholar
  40. La Russa MF, Ruffolo SA, Álvarez de Buergo M, Ricca M, Belfiore CM, Pezzino A, Crisci GM (2017) The behaviour of consolidated Neapolitan yellow Tuff against salt weathering. Bull Eng Geol Environ 76:115.  https://doi.org/10.1007/s10064-016-0874-6 CrossRefGoogle Scholar
  41. Laycock EA, Spence K, Jefferson DP, Hetherington S, Martin B, Wood C (2008) Testing the durability of limestone for Cathedral façade restoration. Environ Geol 56(3–4):521–528CrossRefGoogle Scholar
  42. Liu Z, Deng D, De Schutter G (2014) Does concrete suffer sulfate salt weathering? Constr Build Mater 66:692–701.  https://doi.org/10.1016/j.conbuildmat.2014.06.011 CrossRefGoogle Scholar
  43. López Doncel RA, Wedekind W, Cardona-Velázquez N, González-Sámano PS, Dohrmann R, Siegesmund S, Pötzl C (2016) Geological studies on volcanic tuffs used as natural building stones in the Historical Center of San Luis Potosí, Mexico. In: Hughes JJ, Howind T (eds) Science and art: a future for stone. Proceedings of the 13th international congress on the deterioration and conservation of stone, pp 107–105. University of the West of Scotland, PaisleyGoogle Scholar
  44. López-Arce P, Varas-Muriel MJ, Fernández-Revuelta B, Álvarez de Buergo M, Fort R, Pérez-Soba C (2010) Artificial weathering of Spanish granites subjected to salt crystallization tests: surface roughness quantification. Catena 83(2–3):170–185.  https://doi.org/10.1016/j.catena.2010.08.009 CrossRefGoogle Scholar
  45. López-Arce P, Fort R, Gómez-Heras M, Pérez-Monserrat E, Varas-Muriel MJ (2011) Preservation strategies for avoidance of salt crystallisation in El Paular Monastery Cloister, Madrid, Spain. Environ Earth Sci 63:1487–1509.  https://doi.org/10.1007/s12665-010-0733-x CrossRefGoogle Scholar
  46. Ludovico-Marques M, Chastre C (2012) Effect of salt crystallization ageing on the compressive behavior of sandstone blocks in historical buildings. Eng Fail Anal 26:247–257.  https://doi.org/10.1016/j.engfailanal.2012.08.001 CrossRefGoogle Scholar
  47. Mielke P, Weinert S, Bignall G, Sass I (2016) Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 324:179–189.  https://doi.org/10.1016/j.jvolgeores.2016.06.002 CrossRefGoogle Scholar
  48. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121.  https://doi.org/10.1016/j.enggeo.2011.01.008 CrossRefGoogle Scholar
  49. Molina E, Benavente D, Sebastian E, Cultrone G (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng Geol 197:67–81.  https://doi.org/10.1016/j.enggeo.2015.08.009 CrossRefGoogle Scholar
  50. Momeni A, Hashemi SS, Khanlari GR, Heidari M (2017) The effect of weathering on durability and deformability properties of granitoid rocks. Bull Eng Geol Environ 76:1037.  https://doi.org/10.1007/s10064-016-0999-7 CrossRefGoogle Scholar
  51. Morales Demarco M, Oyhantçabal P, Stein K-J, Siegesmund S (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63(7–8):1879–1909.  https://doi.org/10.1007/s12665-010-0827-5 CrossRefGoogle Scholar
  52. Morales Demarco M, Oyhantçabal P, Stein K-J, Siegesmund S (2013) Granitic dimensional stones in Uruguay: evaluation and assessment of potential resources. Environ Earth Sci 69(4):1397–1438.  https://doi.org/10.1007/s12665-012-2027-y CrossRefGoogle Scholar
  53. Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary-rising salt pollution and granitic stone erosive decay in the Parish Church of Torre de Moncorvo (NE Portugal)—implications for conservation strategy. J Cult Heritage 7:56–66.  https://doi.org/10.1016/j.culher.2005.10.006 CrossRefGoogle Scholar
  54. Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z Dtsch Ges Geowiss 158(4):821–868Google Scholar
  55. Mosquera MJ, Rivas T, Prieto B, Silva B (2000) Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J Colloid Interface Sci 222:41–45.  https://doi.org/10.1006/jcis1999.6612 CrossRefGoogle Scholar
  56. Pazeto AA, Amaral PM, Pinheiro JR, Paraguassú AB (2017) Effects of glass fiber-reinforcement on the mechanical properties of coarse grained building stone. Constr Build Mater 155:79–87.  https://doi.org/10.1016/j.conbuildmat.2017.08.063 CrossRefGoogle Scholar
  57. Pérez-Fortes AP, Varas-Muriel MJ, Castiñeiras P (2017) Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces. Mater Constr 67(328):e138.  https://doi.org/10.3989/mc.2017.07516 CrossRefGoogle Scholar
  58. Prieto B, Silva B (2005) Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties International. Biodeterior Biodegrad 56:206–215.  https://doi.org/10.1016/j.ibiod.2005.08.001 CrossRefGoogle Scholar
  59. Rivas T, Prieto B, Silva B (2000) Influence of rift and bedding plane on the physico-mechanical properties of granitic rocks. Implications for the deterioration of granitic monuments. Build Environ 35:387–396CrossRefGoogle Scholar
  60. Rivas T, Alvarez E, Mosquera MJ, Alejano L, Taboada J (2010) Crystallization modifiers applied in granite desalination: the role of the stone pore structure. Constr Build Mater 24:766–776.  https://doi.org/10.1016/j.conbuildmat.2009.10.031 CrossRefGoogle Scholar
  61. Ruedrich J, Siegesmund S (2007) Salt and ice crystallisation in porous sandstones. Environ Geol 52(2):225–249CrossRefGoogle Scholar
  62. Saidov TA, Pel L, Kopinga K (2016) Sodium sulfate salt weathering of porous building materials studied by NMR. Mater Struct 50:145.  https://doi.org/10.1617/s11527-017-1007-9 CrossRefGoogle Scholar
  63. Sammaljärvi J, Lindberg A, Voutilainen M, Ikonen J, Siitari-Kauppi M, Pitkänen P, Koskinen L (2017) Multi-scale study of the mineral porosity of veined gneiss and pegmatitic granite from Olkiluoto, western Finland. J Radioanal Nucl Chem 314(3):1557–1575.  https://doi.org/10.1007/s10967-017-5530-5 CrossRefGoogle Scholar
  64. Schild M, Siegesmund S, Vollbrecht A, Mazurek M (2001) Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods. Geophys J Int 146(1):111–125CrossRefGoogle Scholar
  65. Siegesmund S, Grimm WD, Dürrast H, Ruedrich J (2010) Limestones in Germany used as building stones: an overview. Geol Soc Lond Special Publ 331(1):37–59CrossRefGoogle Scholar
  66. Sousa LMO (2014) Petrophysical properties and durability of granites employed as building stone: a comprehensive evaluation. Bull Eng Geol Environ 73(2):569–588.  https://doi.org/10.1007/s10064-013-0553-9 CrossRefGoogle Scholar
  67. Sousa L, Barabasch J, Stein K-J, Siegesmund S (2017) Characterization and quality assessment of granitic building stone deposits: a case study of two different Portuguese granites. Eng Geol 221:29–40.  https://doi.org/10.1016/j.enggeo.2017.01.030 CrossRefGoogle Scholar
  68. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12(1):1–33CrossRefGoogle Scholar
  69. Stück H, Plagge R, Siegesmund S (2013) Numerical modeling of moisture transport in sandstone: the influence of pore space, fabric and clay content. Environ Earth Sci 69(4):1161–1187.  https://doi.org/10.1007/s12665-013-2405-0 CrossRefGoogle Scholar
  70. Theoulakis P, Moropoulou A (1997) Microstructural and mechanical parameters determining the susceptibility of porous building stones to salt decay. Constr Build Mater 11(1):65–71CrossRefGoogle Scholar
  71. Thomachot-Schneider C, Gommeaux M, Fronteau G (2008) Modifications of the porous network of sandstone accompanying the formation of black varnish. Environ Geol 56:571–582.  https://doi.org/10.1007/s00254-008-1443-5 CrossRefGoogle Scholar
  72. Thomachot-Schneider C, Gommeaux M, Lelarge N, Conreux A, Mouhoubi K, Bodnar J-L, Vázquez P (2016) Relationship between Na2SO4 concentration and thermal response of reconstituted stone in the laboratory and on site. Environ Earth Sci 75:762.  https://doi.org/10.1007/s12665-016-5388-9 CrossRefGoogle Scholar
  73. Torkan M, Irannezhadi MR, Baghbanan AR (2016) Alteration dependent physical–mechanical properties of quartz-diorite building stones. Int J Min Geoeng 50(2):195–200.  https://doi.org/10.22059/ijmge.2016.59829 Google Scholar
  74. Török A, Czinder B (2017) Relationship between density, compressive strength, tensile strength and aggregate properties of andesites from Hungary. Environ Earth Sci 76:639.  https://doi.org/10.1007/s12665-017-6977-y CrossRefGoogle Scholar
  75. Tuğrul A (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng Geol 75:215–227.  https://doi.org/10.1016/j.enggeo.2004.05.008 CrossRefGoogle Scholar
  76. Tullborg EL, Larson SA (2006) Porosity in crystalline rocks—a matter of scale. Eng Geol 84:75–83CrossRefGoogle Scholar
  77. Unterwurzacher M, Mirwald PW (2008) Initial stages of carbonate weathering: climate chamber studies under realistic pollution conditions. Environ Geol 56:507–519.  https://doi.org/10.1007/s00254-008-1440-8 CrossRefGoogle Scholar
  78. Lubelli B, van Hees RPJ, Nijland TG (2014) Salt crystallization damage: how realistic are existing ageing tests? In van Breugel K, Koenders EAB (eds) Proceedings of the international conference on ageing of materials and structures, Delft, pp 103–111Google Scholar
  79. Vázquez P, Alonso FJ, Esbert RM, Ordaz J (2010) Ornamental granites: relationships between p-waves velocity, water capillary absorption and the crack network. Constr Build Mater 24:2536–2541.  https://doi.org/10.1016/j.conbuildmat.2010.06.002 CrossRefGoogle Scholar
  80. Vázquez P, Luque A, Alonso FJ, Grossi CM (2013) Surface changes on crystalline stones due to salt crystallisation. Environ Earth Sci 69(4):1237–1248.  https://doi.org/10.1007/s12665-012-2003-6 CrossRefGoogle Scholar
  81. Vázquez P, Acuña M, Benavente D, Gibeaux S, Navarro I, Gomez-Heras M (2016) Evolution of surface properties of ornamental granitoids exposed to high temperatures. Constr Build Mater 104:263–275.  https://doi.org/10.1016/j.conbuildmat.2015.12.051 CrossRefGoogle Scholar
  82. Vázquez-Nion D, Silva B, Prieto B (2018) Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci Total Environ 610–611:44–54.  https://doi.org/10.1016/j.scitotenv.2017.08.015 CrossRefGoogle Scholar
  83. Viles HA (2013) Durability and conservation of stone: coping with complexity. Q J Eng Geol Hydrogeol 46:367–375.  https://doi.org/10.1144/qjegh2012-053 CrossRefGoogle Scholar
  84. von Moss A, De Quervain F (1948) Technische Gesteinskunde. Birkhäuser, BaselCrossRefGoogle Scholar
  85. Warke PA, Smith BJ, Lehane E (2011) Micro-environmental change as a trigger for granite decay in offshore Irish lighthouses: implications for the long-term preservation of operational historic buildings. Environ Earth Sci 63:1415–1431.  https://doi.org/10.1007/s12665-010-0662-8 CrossRefGoogle Scholar
  86. Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69:1203–1224.  https://doi.org/10.1007/s12665-012-2158-1 CrossRefGoogle Scholar
  87. Wilhelm K, Viles H, Burke Ò (2016) The influence of salt on handheld electrical moisture meters: can they be used to detect salt problems in porous stone? Int J Architectural Heritage 10(6):735–748.  https://doi.org/10.1080/15583058.2015.1109733 CrossRefGoogle Scholar
  88. Winkler EM (1973) Stone: properties, durability in man’s environment. Springer, BerlinCrossRefGoogle Scholar
  89. Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236.  https://doi.org/10.1016/j.enggeo.2009.05.007 CrossRefGoogle Scholar
  90. Zedef V, Unal M (2010) Effect of salt crystallization on the building stones used in Konya, central Turkey. Int J Econ Environ Geol 1(1):51–52Google Scholar
  91. Sawdy-Heritage AM, Heritage A, Pel L (2008) A review of salt transport in porous media: assessment methods and salt reduction treatments. In Salt weathering on buildings and stone sculptures (SWBSS), 22–24 October 2008, Copenhagen, DenmarkGoogle Scholar
  92. Leite ALFC (2008) Estudo da deterioração da pedra na Igreja de Santa Clara em Vila do Conde. Master Thesis, Engineering Faculty, University of PortoGoogle Scholar
  93. Klopfer H (1985) Feuchte. In: Lutz et al (eds) Lehrbuch der Bauphysik. Teubner, StuttgartGoogle Scholar
  94. Jamshidi A, Zamanian H, Sahamieh RZ (in press) The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity. Rock Mech Rock Eng (accepted).  https://doi.org/10.1007/s00603-0171379-8
  95. Vázquez P, Esbert RM, Alonso FJ, et Ordaz J (2008) Evaluation of damage induced by salt crystallization in granitic building stones. In: 11th International congress on deterioration and conservation of Stone Torún, vol I, pp 325–331Google Scholar
  96. Hoffmann A (2007) Naturwerksteine Thailands: Lagerstättenerkundung und Bewertung. http:// webdoc.sub.gwdg.de/diss/2007/hoffmann/hoffmann.pdf. Accessed 19 Dec 2017Google Scholar
  97. Henriques AME, Tello JSMN (2006) Manual da pedra natural para a arquitetura. Direcção Geral da Geologia e Energia. ISBN 989-95163-0-9Google Scholar
  98. Fojo ACOT (2006) Estudo da aplicação de consolidantes e hidrófugos em pedras graníticas da Igreja Matriz de Caminha. Master Thesis, Engineering Faculty, University of PortoGoogle Scholar
  99. Ferreira JMLC (2011) Degradação da pedra provocada por sais em edifícios antigos. Master Thesis, Engineering Faculty, University of PortoGoogle Scholar
  100. Vicente MA (1996) Final report 1991–1994—Project STEP-CT-0101—granitic materials and historical monuments: study of the factors and mechanisms of weathering and application to historical heritage conservation. In: Vicente MA, Rodrigues JD, Acevedo J (eds) Proceedings of the European Commission workshop degradation and conservation of granitic rocks in monuments, Santiago de Compostela. Protection and conservation of European cultural heritage, research report nº 5, pp 1–44Google Scholar
  101. Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt. Geological Society, London, Special Publications, vol 331, pp 61–77.  https://doi.org/10.1144/SP331.5
  102. Doehne E (2002) Salt weathering: a selective revue. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society of London, Special Publications vol 205, pp 51–64Google Scholar
  103. Begonha A, Jeannette D, Hammecker C, Braga MAS (1994) Physical characteristics of the Oporto granite related to stone decay in monuments. In: Fassina V, Ott H, Zezza F (eds) Proc. 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo – Venezia, pp 541–546Google Scholar
  104. Barroso CE, Oliveira DV, Ramos LF (in press) Vernacular schist farm walls: materials, construction techniques and sustainable rebuilding solutions. J Build Eng (accepted).  https://doi.org/10.1016/j.jobe.2017.12.001
  105. Antão A, Quinta-Ferreira M (2015) Weathering influence on physical properties of the Guarda granite, Portugal. In: Proceedings of the 15th international SGEM geoconference on science and technologies in geology, exploration and mining.  https://doi.org/10.5593/SGEM2015/B12/S2.115
  106. Alencar CRA (2013) Manual de caracterização, aplicação, uso e manutenção das principais rochas comerciais no Espírito Santo: rochas ornamentais. Instituto Euvaldo Lodi - Regional do Espírito Santo, Cachoeiro de ItapemirimGoogle Scholar
  107. LNEC (1990a) Estudos relativos à alteração e conservação do granito do claustro do Mosteiro de Grijó, em Vila Nova de Gaia. Relatório 243/90-GERO/NQ, LisboaGoogle Scholar
  108. Ruedrich J, Sigesmund S (2006) Fabric dependence of length change behaviour induced by ice crystallization in the pore space of natural building stones. In: Fort A, Alvarez de Buergo M, Gomez-Heras M et al (eds) Heritage, weathering and conservation. Taylor and Francis Group, LondonGoogle Scholar
  109. LNEC (1990b) Estudo relativo à acção dos pombos sobre a pedra das igrejas do Carmo e dos Carmelitas, no Porto, e de São Gonçalo, em Amarante. Relatório 243/9-GERO/NQ, LisboaGoogle Scholar
  110. Martins ML, Vasconcelos G, Lourenço PB, Palha C (2016) Influence of the salt crystallization in the durability of granites used in vernacular masonry buildings. In: Modena C, da Porto F, Valluzzi MR (eds) Brick and block masonry—trends, innovations and challenges. Taylor and Francis Group, London, pp 517–524. ISBN 978-1-138-02999-6Google Scholar
  111. Ribeiro CMM (2013) Avaliação do desempenho de revestimentos superficiais na durabilidade de pedra de construção. Master Thesis, Engineering Scholl, University of MinhoGoogle Scholar
  112. Sengun N, Demirdag S, Akbay D, Ugur I, Altindag R, Akbulut A (2014) Investigation of the relationships between capillary water absorption coefficients and other rock properties of some natural stones, V. In: Global stone congress, 22–25 October 2014, Antalya/TürkiyeGoogle Scholar
  113. Shahidzadeh N, Desarnaud J, Bonn D (2016) Direct measurement of salt crystallization pressure at the pore scale. In: Hughes J, Howind T (eds) Science and art: a future for stone: proceedings of the 13th international congress on the deterioration and conservation of stone, vol 1. University of the West of Scotland, Paisley, pp. 467–474Google Scholar
  114. Siedel H, Siegesmund S (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. SpringerGoogle Scholar
  115. Siegesmund S, Dürrast H (2014) Physical and mechanical properties of the rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. SpringerGoogle Scholar
  116. Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine und sein Einfluß auf die Verwitterung. Münchner Geowissenschaftliche Abhandlungen Reihe B Allgemeine und Angewandte GeologieGoogle Scholar
  117. Silva AC (2012) Estudo diagnóstico, cartografia e proposta de tratamento das deteriorações do granito do Hospital da Santa Casa da Misericórdia de Viana do Castelo. Master Thesis, Engineering Faculty, University of PortoGoogle Scholar
  118. Pinto APF, Rodrigues JD, Costa DR (1994) Assessment of the efficacy and harmfulness of water repellents in granite. In: Fassina V, Ott H, Zezza F (eds) Proc. 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo, Venezia, pp 883–889Google Scholar
  119. Pérez-Ortiz A, Ordaz J, Esbert RM, Alonso FJ, Días-Pache F (1996) Physical behaviour degradation trends in an anisotropic granite. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone, Berlin, pp 205–209Google Scholar
  120. Steiger M, Charola AE, Sterflinger K (2014) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. SpringerGoogle Scholar
  121. Mosch S (2009) Optimierung der Exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http:// webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf. Accessed 19 Dec 2017Google Scholar
  122. Strohmeyer D (2003) Gefügeabhängigkeit technischer Gesteinseigenschaften. Dissertation zur Erlangung des Doktorgrades Mathematisch-Naturwissenschaftliche Fakultäten der Georg-August-Universität zu GöttingenGoogle Scholar
  123. Stu E, Eggers T, Cassar J, Ruedrich J, Fitzner B, Siegesmund S (2007) Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geological Society, London, Special Publications 271:189–198Google Scholar
  124. Morales Demarco M (2012) Mineralogical, petrophysical and economical characterization of the dimensional stones of Uruguay; implications for deposit exploration. PhD Thesis, University of GottingenGoogle Scholar
  125. Mendes PIP (2013) Estudos sobre a Igreja de São Domingos em Viana do Castelo: bases para intervenção de conservação exterior. Master Thesis, University of Trás-os-Montes e Alto DouroGoogle Scholar
  126. LNEC (1990c) Estudo relativo à alteração e conservação do granito da Torre dos Clérigos, no Porto. Relatório 243/9-GERO/NQ, LisboaGoogle Scholar
  127. MacWilliam K (2017) Aging tests to assess the durability of building materials to salt crystallization—towards a more realistic and effective use of sodium sulfate. MSc Dissertation, Czech Technical University, PragueGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeologyUniversity of Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.Geoscience CentreUniversity GöttingenGöttingenGermany
  3. 3.CEMMPRE Research CentreCoimbraPortugal

Personalised recommendations