Advertisement

Characterization, modeling, and remediation of karst in a changing environment

  • Zexuan Xu
  • Nicolas Massei
  • Ingrid Padilla
  • Andrew Hartmann
  • Bill Hu
Thematic Issue

Abstract

This introductory editorial paper provides a review and prospective outlook of the achievements and challenges in karst research under a changing environment. A brief discussion of the past and future karst research has been focused on: (1) data and new technologies; (2) modeling of karst flow and reactive transport; (3) responses of karst hydrosystems to climate variability and changes across scales.

Keywords

Karst Data Modeling Changing Climate 

References

  1. Adinehvand R, Raeisi E, Hartmann A (2017) A step-wise semi-distributed simulation approach to characterize a karst aquifer and to support dam construction in a data-scarce environment. J Hydrol 554:470–481.  https://doi.org/10.1016/j.jhydrol.2017.08.056 CrossRefGoogle Scholar
  2. Anaya AA, Padilla I, Macchiavelli R, Vesper DJ, Meeker JD, Alshawabken AN (2014) Estimating preferential flow in karstic aquifers using statistical mixed models. Groundwater 52(4):584–596.  https://doi.org/10.1111/gwat.12084 CrossRefGoogle Scholar
  3. Chang Y, Wu J, Jiang G (2015) Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model. Hydrogeol J 23(5):901–914.  https://doi.org/10.1007/s10040-015-1241-6 CrossRefGoogle Scholar
  4. Chen Z, Hartmann A, Goldscheider N (2017) A new approach to evaluate spatiotemporal dynamics of controlling parameters in distributed environmental models. Environ Model Softw 87:1–16.  https://doi.org/10.1016/j.envsoft.2016.10.005 CrossRefGoogle Scholar
  5. Cordero JF, Meeker JF, Loch-Caruso R et al (2018) Team science applied to environmental health research: karst hydrogeology and preterm birth in Puerto Rico. In: White WB, Herman JS, Herman EK, Rutigliano M (eds) Karst groundwater contamination and public health: beyond case studies. Springer, Berlin, pp 17–25.  https://doi.org/10.1007/978-3-319-51070-5 CrossRefGoogle Scholar
  6. de Rooij R, Graham W (2017) Generation of complex karstic conduit networks with a hydrochemical model. Water Resour Res 53(8):6993–7011.  https://doi.org/10.1002/2017WR020768 CrossRefGoogle Scholar
  7. Faulkner J, Hu BX, Kish S, Hua F (2009) Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. J Contam Hydrol 110(1):34–44.  https://doi.org/10.1016/j.jconhyd.2009.08.004 CrossRefGoogle Scholar
  8. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  9. Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Groundwater 45(1):36–45.  https://doi.org/10.1111/j.1745-6584.2006.00261.x CrossRefGoogle Scholar
  10. Ghasemizadeh R, Hellweger F, Butscher C et al (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20(8):1441–1461.  https://doi.org/10.1007/s10040-012-0897-4 CrossRefGoogle Scholar
  11. Gill AL, Finzi AC (2016) Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol Lett 19:1419–1428.  https://doi.org/10.1111/ele.12690 CrossRefGoogle Scholar
  12. Gochis DJ, Yu W, Yates DN (2013) The WRF-Hydro model technical description and user’s guide, version 1.0. NCAR technical document, p 120Google Scholar
  13. Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37(1):3.  https://doi.org/10.5038/1827-806X.37.1.3 CrossRefGoogle Scholar
  14. Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46(1):61–68.  https://doi.org/10.1111/j.1745-6584.2007.00373.x Google Scholar
  15. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242.  https://doi.org/10.1002/2013RG000443 CrossRefGoogle Scholar
  16. Hartmann A, Gleeson T, Rosolem R, Pianosi F, Wada Y, Wagener T (2015) A large-scale simulation model to assess karstic groundwater recharge over Europe and the Mediterranean. Geosci Model Dev 8:1729–1746.  https://doi.org/10.5194/gmd-8-1729-2015 CrossRefGoogle Scholar
  17. Hartmann A, Barberá JA, Andreo B (2017a) On the value of water quality data and informative flow states in karst modelling. Hydrol Earth Syst Sci 21:5971–5985.  https://doi.org/10.5194/hess-2017-230 CrossRefGoogle Scholar
  18. Hartmann A, Gleeson T, Wada Y, Wagener T, Kingdom U, Sciences O, Kingdom U (2017b) Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity. Proc Natl Acad Sci 19:EGU2017-12796.  https://doi.org/10.1073/pnas.1614941114 Google Scholar
  19. Huang F, Zhang C, Xie Y, Li L, Cao J (2015) Inorganic carbon flux and its source in the karst catchment of Maocun, Guilin, China. Environ Earth Sci 74:1079–1089.  https://doi.org/10.1007/s12665-015-4478-4 CrossRefGoogle Scholar
  20. Jaquet O, Siegel P, Klubertanz G, Benabderrhamane H (2004) Stochastic discrete model of karstic networks. Adv Water Resour 27(7):751–760.  https://doi.org/10.1016/j.advwatres.2004.03.007 CrossRefGoogle Scholar
  21. Jiang Z, Lian Y, Qin X (2014) Rocky desertification in Southwest China: impacts, causes, and restoration. Earth Sci Rev 123:1–12.  https://doi.org/10.1016/j.earscirev.2014.01.005 CrossRefGoogle Scholar
  22. Kauffeldt A, Wetterhall F, Pappenberger F, Salamon P, Thielen J (2015) Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ Model Softw 75:68–76.  https://doi.org/10.1016/j.envsoft.2015.09.009 CrossRefGoogle Scholar
  23. Kenney JD, McGinnis RN, Willden GC, Abbott BA, Green RT (2012) Neutrally buoyant sensor apparatus and method for mapping a water pathway. US Patent 8165814. https://www.google.com/patents/US8165814. Accessed 1 Jun 2018
  24. Kuniansky E (2016) Simulating groundwater flow in karst aquifers with distributed parameter models—comparison of porous-equivalent media and hybrid flow approaches. U.S. Geological survey scientific investigations report 2016–5116, p 14.  https://doi.org/10.3133/sir20165116
  25. Kuniansky E, Weary DJ, Kaufmann JE (2016) The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States. Hydrogeol J 24(3):613–624.  https://doi.org/10.1007/s10040-015-1333-3 CrossRefGoogle Scholar
  26. Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res.  https://doi.org/10.1029/2001WR001206 Google Scholar
  27. Lu R (2007) Karst water resources and geo-ecology in typical regions of China. Environ Geol 51:695.  https://doi.org/10.1007/s00254-006-0381-3 CrossRefGoogle Scholar
  28. Maxwell RM, Lundquist JK, Mirocha JD, Smith SG, Woodward CS, Tompson AF (2011) Development of a coupled groundwater–atmosphere model. Mon Weather Rev 139(1):96–116.  https://doi.org/10.1175/2010MWR3392.1 CrossRefGoogle Scholar
  29. Mazzilli N, Jourde H, Jacob T et al (2013) On the inclusion of ground-based gravity measurements to the calibration process of a global rainfall-discharge reservoir model: case of the Durzon karst system (Larzac, southern France). Environ Earth Sci 68:1631–1646.  https://doi.org/10.1007/s12665-012-1856-z CrossRefGoogle Scholar
  30. Padilla IY, Vesper DJ (2018) Fate, transport, and exposure of emerging and legacy contaminants in karst system:state of knowledge and uncertainty. In: White WB, Herman JS, Herman EK, Rutigliano M (eds) Karst groundwater contamination and public health: beyond case studies. Springer, Berlin, pp 33–49.  https://doi.org/10.1007/978-3-319-51070-5 CrossRefGoogle Scholar
  31. Padilla IY, Irizarry C, Steele K (2011) Historical contamination of groundwater resources in the north coast karst aquifers of Puerto Rico, dimensión. Año 25 3:7–12Google Scholar
  32. Pardo-Igúzquiza E, Dowd PA, Xu C, Durán-Valsero JJ (2012) Stochastic simulation of karst conduit networks. Adv Water Resour 35:141–150.  https://doi.org/10.1016/j.advwatres.2011.09.014 CrossRefGoogle Scholar
  33. Rehrl C, Birk S, Klimchouk AB (2008) Conduit evolution in deep-seated settings: conceptual and numerical models based on field observations. Water Resour Res.  https://doi.org/10.1029/2008WR006905 Google Scholar
  34. Reimann T, Geyer T, Shoemaker WB, Liedl R, Sauter M (2011) Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers. Water Resour Res.  https://doi.org/10.1029/2011WR010446 Google Scholar
  35. Scanlon BR, Mace RE, Barrett ME, Smith B (2003) Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol 276:137–158.  https://doi.org/10.1016/S0022-1694(03)00064-7 CrossRefGoogle Scholar
  36. Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. US geological survey techniques and methods 6-A24Google Scholar
  37. Weidner N, Rahman S, Li AQ, Rekletis I (2017) Underwater cave mapping using stereo vision. IEEE Int Conf.  https://doi.org/10.1109/ICRA.2017.7989672 Google Scholar
  38. Werner C (1998) Determination of groundwater flow patterns from cave exploration in the Woodville Karst Plain, Florida, vol 46. Florida Geological Survey Special Publication, FloridaGoogle Scholar
  39. White WB (2018) Abstracts of additional conference papers, karst groundwater contamination and public health. Spring, Cham, pp 335–340CrossRefGoogle Scholar
  40. Winnick MJ, Carroll RW, Williams KH, Maxwell RM, Dong W, Maher K (2017) Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado. Water Resour Res 53(3):2507–2523.  https://doi.org/10.1002/2016WR019724 CrossRefGoogle Scholar
  41. Worthington SR, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336.  https://doi.org/10.1111/j.1745-6584.2009.00551.x CrossRefGoogle Scholar
  42. Xu Z, Hu BX (2017) Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system. Water Resour Res.  https://doi.org/10.1002/2016WR018758 Google Scholar
  43. Xu Z, Hu BX, Davis H, Cao J (2015a) Simulating long term nitrate-N contamination processes in the Woodville Karst Plain using CFPv2 with UMT3D. J Hydrol 524:72–88.  https://doi.org/10.1016/j.jhydrol.2015.02.024 CrossRefGoogle Scholar
  44. Xu Z, Hu BX, Davis H, Kish S (2015b) Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2. J Contam Hydrol 182:131–145.  https://doi.org/10.1016/j.jconhyd.2015.09.003 CrossRefGoogle Scholar
  45. Xu Z, Bassett SW, Hu BX, Dyer SB (2016) Long distance seawater intrusion through a karst conduit network in the Woodville Karst Plain, Florida. Sci Rep 6:32235.  https://doi.org/10.1038/srep32235 doiCrossRefGoogle Scholar
  46. Xu Z, Hu BX, Ye M (2018) Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks. Hydrol Earth Syst Sci 22:221–239.  https://doi.org/10.5194/hess-22-221-2018 CrossRefGoogle Scholar
  47. Yu X, Ghasemizadeh R, Padilla IY, Irizarry C, Kaeli D, Alshawabkeh A (2015) Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico. Sci Total Environ 511:1–10.  https://doi.org/10.1016/j.scitotenv.2014.12.031 CrossRefGoogle Scholar
  48. Zeng C, Liu Z, Zhao M, Yang R (2016) Hydrologically-driven variations in the karst-related carbon sink fluxes: insights from high-resolution monitoring of three karst catchments in Southwest China. J Hydrol 533:74–90.  https://doi.org/10.1016/j.jhydrol.2015.11.049 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Climate and Ecosystem Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Continental and Coastal Morphodynamics LaboratoryUniversity of Rouen-NormandyNormandyFrance
  3. 3.Department of Civil Engineering and SurveyingUniversity of Puerto Rico at MayagüezMayagüezUSA
  4. 4.Faculty of Environment and Natural ResourcesUniversity of FreiburgFreiburgGermany
  5. 5.Department of Civil EngineeringUniversity of BristolBristolUK
  6. 6.Institute of Groundwater and Earth SciencesJinan UniversityGuangzhouChina

Personalised recommendations