Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Natural stones of the Saale–Unstrut Region (Germany): petrography and weathering phenomena

  • 230 Accesses

  • 4 Citations

Abstract

Dimension stones of the central German Saale–Unstrut Region were investigated with regard to petrographic and petrophysical properties as well as their weathering behaviour, onsite and in laboratory. To evaluate the suitability of building stones in this region, different buildings (the Rudelsburg Castle, Memleben Monastery, and vineyard walls) and one rock relief (Steinerne Bibel), made of different types of sandstone or limestone were studied concerning the damage situations. Laboratory measurements include characterisation of pore space properties, water uptake or water vapour diffusion analyses and strength tests. Weathering simulation tests, such as hygric swelling and salt weathering resistance were performed and compared with on-site building observations. In general, the limestones investigated here are classified with a higher construction suitability due to their lower porosity and ability for water uptake, as well as their higher tensile strength, which again is proven by the weathering tests in laboratory. Laboratory analyses reveal for sandstone samples higher porosities and unfavourable pore radii distributions (high content of capillary pores/micropores), resulting in high rates of water uptake, and low resistance against mechanical stress. This behaviour is attributed mainly to the petrographical/diagenetical properties of sandstones investigated, where, e.g. low compaction or cementation (e.g. due to the presence of clay coatings) prohibit a reduction in intergranular volume and create high amount of capillary pores and, in some cases, a high content of micropores. In deviation to this, one dolomitic sandstone sample shows low porosity and water absorption, as well as high strength properties, making them, at a first glance, highly suitable for building purposes. The limestones predominantly exhibit, due to their micritic fabric, low porosity and water absorption but high strength, and, in consequence, hold a relatively high resistance against salt weathering and therefore a high weathering resistance during laboratory tests and onsite. The generally low hygric dilatation is also a favourable characteristic. Contrary, also limestones with low tensile strength or high porosity occur, which is explained with internal crack structures and loss of components (ooids), respectively. However, together with favourable pore radii distributions (e.g. few capillary/micropores), the construction suitability is evaluated to be better than for the sandstones. These findings on construction suitability are also reflected/supported by studies onsite. Observations at the, e.g. rock relief “Steinerne Bibel” confirm that the unfavourable petrophysical properties of the fluvial, immature sandstones lead to low resistance against salt weathering and together with hygric dilatation, to a poor condition of the rock relief. Additionally, the investigation of the rock relief “Steinerne Bibel” has shown that the preservation of the reliefs within the Solling Sandstone and Chirotheria Sandstone is a great challenge, since the rock interacts with pore water which is enriched by salts of the Röt saline unit. A direct interaction between the cement of natural stones and mortar could also be observed (Bernburg Formation, Memleben Abbey), which emphasises that the application of mortars should only be performed by the existing knowledge of the material properties. Moreover, the intensity and type of deterioration depends mainly on different rock properties and on the exposition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Bachmann GH, Schwab M (2008) Regionalgeologische Entwicklung - Kompendien zur Geologie von Ostdeutschland - Geologie von Sachsen-Anhalt. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (Hrsg.) Schweizerbart́sche Verlagsbuchhandlung, pp 25–34

  2. Bachmann GH, Beutler G, Hagdorn H, Hauschke N (1999) Stratigraphie der germanischen Trias. Trias-Eine ganz andere Welt: Pfeil Verlag, München, pp 81–104

  3. Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordóñez S (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544

  4. Beutler G, Szulc S (1999) Die paläogeographische Entwicklung des Germanischen Beckens in der Trias und die Verbindung zur Tethys. Trias-Eine ganz andere Welt: Pfeil Verlag, München, pp 71–80

  5. Beutler G, Hauschke N, Nitsch E (1999) Faziesentwicklung des Keupers im Germanischen Becken. Trias-Eine ganz andere Welt, München, pp 129–174

  6. Bjorlykke K, Ramm M, Saigal GC (1989) Sandstone diagenesis and porosity modification during basin evolution. Geol Rundsch 87(1):243–268

  7. Dolezalek B (1955) Die Finne-Störung bei Bad Sulza, Eckartsberga und Rastenberg. Abh Dt Akad 5(1955):139–173

  8. Epperlein K (2014) Die Kultur von Reben und Wein in der Region Saale-Unstrut. In: Siegesmund S, Hoppert M, Epperlein K (eds) Natur, Stein, Kultur, Wein. Zwischen Saale und Unstrut. Mitteldeutscher Verlag, Halle/Saale, pp S267–S291

  9. Fitzner B (1970) Die Prüfung der Frostbeständigkeit von Naturbausteinen, Aaachen, Dissertation

  10. Fitzner B, Heinrichs K (1992) Verwitterungszustand und Materialeigenschaften der Kalksteine des Naumburger Doms - Jahresberichte aus dem Forschungsprogramm "Steinzerfall-Steinkonservierung" 1990, Förderprojekt des Bundeministeriums für Forschung und Technologie. Verlag Ernst & Sohn, Berlin

  11. Fitzner B, Snethlage R (1982) Einfluß der Porenradienverteilung auf das Verwitterungsverhalten ausgewählter Sandsteine. Bautenschutz und Bausanierung. Nr 3:97–103

  12. Fitzner B, Heinrichs K, La Bouchardiere D (2003) Weathering damage on Pharaonic sandstone monuments in Luxor, Egypt. Build Environ 38:1089–1103

  13. Fitzner B, Heinrichs K, La Bouchardiere D (2004) The Bangudae Petroglyoh in Ulsan, Korea: studies on weathering damage and risk prognosis. Environ Geol 46:504–526

  14. Folk RL (1959) Practical petrographic classification of limestones. Am Assoc Pet Geol Bull 43:1–38

  15. Franke D (2013) Regionale Geologie von Ostdeutschland—Ein Wörterbuch. www.regionalgeologie-ost.de. Accessed 01 Nov 2017

  16. Gonzalez IJ, Scherer GW (2004) Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ Geo 46:364–377

  17. Graue B, Siegesmund S, Oyhantacabal R, Naumann R, Licha T, Simon K (2013) The air pollution of stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of Cologne, Altenberg and Xanten chathedrals. Environ Earth Sci 69(4):1095–1124

  18. Heinrichs K, Fitzner B (2007) Stone monuments of the Nemrud Dag Sanctuary/Turkey: petrographical investigation and diagnosis of weathering damage. Z Dtsch Ges Geowiss 158(3):519–548

  19. Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Verlag W Ernst & Sohn, Berlin

  20. Houseknecht DW (1988) Intergranular pressure solution in four quartzose sandstones. J Sed Petrology 58:228–246

  21. Hüpers A, Müller C, Siegesmund S (2005) Kalksteinverwitterung: Die Zitadelle und das Parlament von Budapest. In: Siegesmund S, Snethlage R, Auras M (eds) Stein, Zerfall und Konservierung. Edition Leipzig, Leipzig, pp 201–209

  22. Klemm W (2005) Zur Herkunft von Sulfat an Bauwerken – das Schwefelisotopenverhältnis als Indikator. In: Siegesmund S, Auras M, Snethlage R (Hrsg) Stein Zerfall und Konservierung. Edition Leipzig, Leipzig

  23. Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H (2008) Strain and stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European basin system. Springer, Berlin, pp 97–124

  24. Litt T, Wansa S (2008) Quartär - Kompendien zur Geologie von Ostdeutschland - Geologie von Sachsen-Anhalt. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (Hrsg.) Schweizerbart́sche Verlagsbuchhandlung, pp 293–325

  25. Maystrenko Y, Bayer U, Brink H-J, Littke R (2008) The Central European basin system: an overview. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin System. Springer, Berlin, pp 19–34

  26. McBride EF (1963) A classification of common sandstones. J Sediment Petrol 33(3):664–669

  27. Mirwald P (1997) Physikalische Eigenschaften der Gesteine. In: Berufsbildungswerk des Steinmetz- und Bildhauerhandwerkes e.V. (ed) Ebner Verlag, Ulm

  28. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

  29. Mosch S, Siegesmund S (2007) Statistisches Verhalten petrophysikalischer und technischer Eigenschaften von Naturwerksteinen. Z Dtsch Geol Ges 158(4):821–868

  30. Müller A (2014) Saale–Unstrut-Triasland. Ein geologischer Reisebegleiter. Teil 1: Geologischer Überblick. – Schr. Mus. Mineral. Geol. Dresden

  31. Müller A, Beutler G, Siegesmund S (2014) Geologie des Triaslandes und Landschaftsentwicklung. In: Siegesmund S, Hoppert M, Epperlein K (eds) Natur, Stein, Kultur, Wein. Zwischen Saale und Unstrut. Mitteldeutscher Verlag, Halle/Saale, pp S45–S92

  32. Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine. Münchener Geowiss Abh B 7, Verlag Dr. Friedrich Pfeil, Munich

  33. Radzinski KH (1995) Zur Gliederung der Trias im südlichen Sachsen-Anhalt. Z geol Wiss 23(S):43–62

  34. Radzinski K-H (2008) Buntsandstein - Kompendien zur Geologie von Ostdeutschland - Geologie von Sachsen-Anhalt. In: Bachmann GH, Ehling B-C, Eichner R, Schwab M (Hrsg.) Schweizerbart́sche Verlagsbuchhandlung, pp 180–200

  35. Röhling HG (1991) A lithostratigraphic subdivision of the Lower Triassic in the Northwest German Lowlands and the German sector of the North Sea, based on gamma-ray and sonic logs. Geol Jb A 119:3–24

  36. Rossi-Manaresi R, Tucci A (1991) Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Stud Conserv 36:53–58

  37. Ruedrich J, Siegesmund S (2006) Salt and ice crystallisation in porous sandstones. Environ Geol 52(2):225–249

  38. Ruedrich J, Siegesmund S (2007) Salt induced weathering: an experimental approach. Environ Geol 52:225–249

  39. Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2010) Building sandstone integrity affected by the process of hygric expansion. Environ Earth Sci. https://doi.org/10.1007/s12665-010-0767-0

  40. Schmitt R (2014) Mittelalterliche Bauwerke zwischen Wendelstein und Naumburg. In: Siegesmund S, Hoppert M, Epperlein K (eds) Natur, Stein, Kultur, Wein. Zwischen Saale und Unstrut. Mitteldeutscher Verlag, Halle/Saale, pp S237–S265

  41. Sebastian E, Cultrone G, Benavente D (2008) Swelling dame in clay-rich sandstones used in the church of San Mateo in Tarifa (Spain). J Cultural Herit 9:66–76

  42. Seidel G (1992) Thüringer Becken. Sammlung Geologischer Führer, Thüringer

  43. Seidel G (2003) (Hrsg) Geologie von Thüringen. Schweizerbart, Stuttgart

  44. Siedel H, Siegesmund S (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. Springer, Berlin, pp 349–414

  45. Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. In: Siegesmund S, Snethlage R (eds) Stone and architecture. Springer, Berlin, pp 97–225

  46. Siegesmund S, Snethlage S (eds) (2014) Stone in architecture: properties, durability. Springer, Berlin, 2011

  47. Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage, the conservation of historic stone structures. Elsevier, Hoboken, pp 7–24

  48. Steindlberger E (2003) Vulkanische Gesteine aus Hessen und ihre Eigenschagften als Naturwerksteine. Geol Abh Hess 110:1–67

  49. Stück H, Fischer C, Siegesmund S (2010) Bausteine der Region Drei Gleichen: Entstehung, Charakterisierung und Verwitterung. In: Siegesmund S, Hoppert M (eds) Die Drei Gleichen: Baudenkmäler und Naturraum. Edition Leipzig, Leipzig, pp 131–159

  50. Stück H, Siegesmund S, Rüdrich J (2011) Weathering behaviour and construction suitability of dimension stones from the Drei Gleichen area (Thuringia, Germany). Environ Earth Sci 63(7–8):1763–1786

  51. Stück H, Koch R, Siegesmund S (2012) Petrographical and petrophysical properties of sandstones: statistical analysis as an approach to predicting material behavior and construction suitability. Environ Earth Sci 69(4):1299–1332. https://doi.org/10.1007/s12665-012-2008-1

  52. Stück H, Siegesmund S, Platz T, Sohnrey A (2014) Bausteine der Region Saale–Unstrut – Entstehung, Verwendung und Verwitterung. In: Siegesmund S, Hoppert M, Epperlein K (eds) Natur, Stein, Kultur, Wein. Zwischen Saale und Unstrut. Mitteldeutscher Verlag, Halle/Saale, pp S267–S291

  53. Surdam RC, Dunn TL, MacGowan DB, Heasler HP (1989) Conceptual models for the prediction of porosity evolution with an example from the Frontier Sandstone, Big-Horn Basin, Wyoming. In: Coalson EB, Kaplan SS, Keighin CW, Oglesby LA, Robinson JW (eds) Sandstone Reservoirs. Rocky Mountain Association of Geologists, Denver, pp 7–21

  54. Voigt T, Gaupp R (2000) Die fazielle Entwicklung an der Grenze zwischen Unterem und Mittlerem Buntsandstein im Zentrum der Thüringer Senke. Beiträge zur Geologie von Thüringen. Neue Folge 7:55–71

  55. Usdowski HE (1963) Der Rogenstein des norddeutschen Unteren Buntsandsteins, ein Kalkoolith des marinen Faziesbereichs. Fortschr Geol Rheinland Westfalen 10:337–342

  56. Wedekind W (2014) Schwierige Ruinen – Zur Erhaltung der Ruinen und Felsmonumente an der Unstrut. In: Siegesmund S, Hoppert M, Epperlein K (eds) Natur, Stein, Kultur, Wein. Zwischen Saale und Unstrut. Mitteldeutscher Verlag, Halle/Saale, pp S267–S291

  57. Weimann MB (2001) Hygrische Eigenschaften von Polymerbeton im Vergleich zu porösen mineralischen Werkstoffen im Bauwesen. Thesis, Technical University, Zurich

  58. Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46:402–413

  59. Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236

Download references

Acknowledgements

The present study is part of a comprehensive investigation on the Saale–Unstrut area, which was supported by the German Federal Environmental Foundation (DBU–AZ 29445/01). The financial support is gratefully acknowledged. Special thanks go also to Christian Gross for editing and reviewing the manuscript.

Author information

Correspondence to H. L. Stück.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa, and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stück, H.L., Platz, T., Müller, A. et al. Natural stones of the Saale–Unstrut Region (Germany): petrography and weathering phenomena. Environ Earth Sci 77, 300 (2018). https://doi.org/10.1007/s12665-018-7476-5

Download citation

Keywords

  • Natural stones
  • Limestones
  • Sandstones
  • Gypsum
  • Petrography
  • Petrophysical properties
  • Decay mapping