Calcium oxalates in biofilms on limestone walls of Maya buildings in Chichén Itzá, Mexico

  • W. S. González-Gómez
  • P. Quintana
  • S. Gómez-Cornelio
  • C. García-Solis
  • A. Sierra-Fernandez
  • O. Ortega-Morales
  • S. C. De la Rosa-García
Thematic Issue
  • 69 Downloads
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

Microbial biofilms frequently cause the esthetic and biological deterioration of stone monuments. Chichén Itzá, designated as a UNESCO World Heritage Site and as one of the seven new wonders of the world, is one Maya archeological site affected by biofilms. In the present study, we analyzed the biofilms at three different building complexes of Chichén Itzá: the Lower Temple of the Jaguars, the Temple of the Warriors, and Tzompantli. Samples of biofilms and detached rocks were taken from walls with abundant white-, green-, black-, and orange-colored biofilms. The morphology of rock fragments and dust was analyzed by electron and optical microscopy and was structurally characterized by X-ray diffraction. An HCl treatment (5% v/v) was subsequently applied to eliminate carbonates. The morphological analysis evidenced the presence of cyanobacteria, algae, and lichens. Some algae formed small nodules on orange- or black-colored rocks. Lichens were associated with a distinct mineral content on the inner surface of rocks versus on the outer surface. The presence of calcium oxalates such as weddellite (C2CaO4·2H2O) and whewellite (C2CaO4·H2O) and other minerals, including quartz and feldspars, was confirmed by X-ray diffraction. The lichens collected from the Lower Temple of the Jaguars and Tzompantli were therefore confirmed to disintegrate rock surfaces through biomineralization and the formation of oxalate crystals. At sites with greater solar radiation, a higher quantity of weddellite and a lower quantity of whewellite were observed. In conclusion, the establishment of microorganisms on the stone surfaces of Chichén Itzá causes esthetic damage and also leads to the biomineralization of these rock surfaces.

Keywords

Biomineralization Lichen Fungi Algae Cyanobacteria Stone heritage 

Notes

Acknowledgements

The authors thank Ana R. Cristobal, Dora A. Huerta, and D. Aguilar for providing technical assistance in the SEM and XRD analyses conducted at LANNBIO (CINVESTAV, Mérida) and also thank the National Institute of Anthropology and History (INAH) and the management personnel at Chichén Itzá for providing authorization for sampling and assistance during fieldwork. This research was supported by the project Fronteras de la Ciencia 138, “Development and application of advanced materials for the restoration and conservation of historic monuments” (Desarrollo y aplicación de materiales avanzados para la restauración y conservación de monumentos históricos).

References

  1. Adamo P, Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256CrossRefGoogle Scholar
  2. Bartoli F, Municchia AC, Futagami Y, Kashiwadani H, Moon KH, Caneva G (2014) Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate. Int Biodeterior Biodegrad 96:157–165CrossRefGoogle Scholar
  3. Beazley MJ, Rickman RD, Ingram DK, Boutton TW, Russ J (2002) Natural abundances of carbon isotopes (14C, 13C) in lichens and calcium oxalate pruina: implications for archaeological and paleoenvironmental studies. Radiocarbon 44:675–683CrossRefGoogle Scholar
  4. Cabadas HV, Solleiro E, Sedov S, Pi T, Alcalá JR (2010) The complex genesis of red soils in Peninsula de Yucatan, Mexico: mineralogical, micromorphological and geochemical proxies. Eurasian Soil Sci 43:1439–1457CrossRefGoogle Scholar
  5. Caneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage: biodeterioration and conservation. Getty Publications, Los AngelesGoogle Scholar
  6. Carter NEA, Viles HA (2003) Experimental investigations into the interactions between moisture, rock surface temperatures and an epilithic lichen cover in the bioprotection of limestone. Build Environ 38:1225–1234CrossRefGoogle Scholar
  7. Casanova Municchia A, Bartoli F, Bernardini S, Caneva G, Della Ventura G, Ricci MA, Boun Suy T, Sodo A (2016) Characterization of an unusual black patina on the Neang Khmau temple (archaeological Khmer area, Cambodia): a multidisciplinary approach. J Raman Spectrosc 47:1467–1472CrossRefGoogle Scholar
  8. Chapman RL, Waters DA (2001) Lichenization of the Trentepohliales. In: Seckbach J (ed) Symbiosis. Springer, Netherlands, pp 359–371Google Scholar
  9. CONAGUA (2011) Registros de Lluvia y Temperatura de la Estación Meteorológica Pisté, Tinúm. Gerencia Regional de la Península de YucatánGoogle Scholar
  10. Crispim CA, Gaylarde PM, Gaylarde CC (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46:79–82CrossRefGoogle Scholar
  11. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24:36CrossRefGoogle Scholar
  12. De los Ríos A, Cámara B, del Cura MÁG, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci Total Environ 407:1123–1134CrossRefGoogle Scholar
  13. Favero-Longo SE, Gazzano C, Girlanda M, Castelli D, Tretiach M, Baiocchi C, Piervittori R (2011) Physical and chemical deterioration of silicate and carbonate rocks by meristematic microcolonial fungi and endolithic lichens (Chaetothyriomycetidae). Geomicrobiol J 28:732–744CrossRefGoogle Scholar
  14. Flores-Guido JS, Espejel-Carvajal I (1994) Tipos de vegetación de la Península de Yucatán. In: Flores JS (ed) Etnoflora Yucatanense. UADY, Mérida, pp 1–35Google Scholar
  15. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefGoogle Scholar
  16. Gadd GM, Dyer TD (2017) Bioprotection of the built environment and cultural heritage. Microb Biotechnol 10:1152–1156CrossRefGoogle Scholar
  17. Gadd GM, Bahri-Esfahani J, Li Q, Rhee YJ, Wei Z, Fomina M, Liang X (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol Rev 28:36–55CrossRefGoogle Scholar
  18. Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeterior Biodegrad 55:131–139CrossRefGoogle Scholar
  19. Gaylarde PM, Gaylarde CC, Guiamet PS, de Saravia SG, Videla HA (2001) Biodeterioration of Mayan buildings at uxmal and Tulum, Mexico. Biofouling 17:41–45CrossRefGoogle Scholar
  20. Gaylarde P, Englert G, Ortega-Morales O, Gaylarde C (2006) Lichen-like colonies of pure Trentepohlia on limestone monuments. Int Biodeterior Biodegrad 58:119–123CrossRefGoogle Scholar
  21. Gaylarde CC, Ortega-Morales BO, Bartolo-Pérez P (2007) Biogenic black crusts on buildings in unpolluted environments. Curr Microbiol 54:162–166CrossRefGoogle Scholar
  22. Giordani P, Modenesi P, Tretiach M (2003) Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist 35:255–270CrossRefGoogle Scholar
  23. González-Gómez WS, Quintana P, May-Pat A, Avilés F, May-Crespo J, Alvarado-Gil JJ (2015) Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int J Rock Mech Min Sci 75:182–189Google Scholar
  24. Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631CrossRefGoogle Scholar
  25. Grube M, Muggia L, Baloch E, Hametner C, Stocker-Wörgötter E (2017) Symbioses of lichen-forming fungi with Trentepohlialean algae. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses. World Scientific, London, pp 85–110CrossRefGoogle Scholar
  26. Hess D, Coker DJ, Loutsch JM, Russ J (2008) Production of oxalates in vitro by microbes isolated from rock surfaces with prehistoric paints in the lower Pecos region, Texas. Geoarchaeology 23:3–11CrossRefGoogle Scholar
  27. Ibarrondo I, Martínez-Arkarazo I, Madariaga JM (2017) Biomineralization in saxicolous lichens: Raman spectroscopic study supported with XRF and SEM-EDX analyses. J Raman Spectrosc 48:161–169CrossRefGoogle Scholar
  28. Johnston CG, Vestal JR (1989) Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Geomicrobiol J 7:137–153CrossRefGoogle Scholar
  29. Jurado V, Miller AZ, Cuezva S, Fernandez-Cortes A, Benavente D, Rogerio-Candelera MA, Reyes J, Cañaveras JC, Sanchez-Moral Saiz-Jimenez C (2014) Recolonization of mortars by endolithic organisms on the walls of San Roque church in Campeche (Mexico): a case of tertiary bioreceptivity. Constr Build Mater 53:348–359CrossRefGoogle Scholar
  30. Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481CrossRefGoogle Scholar
  31. Mcllroy de la Rosa JP, Warke PA, Smith BJ (2014) The effects of lichen cover upon the rate of solutional weathering of limestone. Geomorphology 220:81–92CrossRefGoogle Scholar
  32. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451CrossRefGoogle Scholar
  33. McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64CrossRefGoogle Scholar
  34. Mihajlovski A, Seyer D, Benamara H, Bousta F, Di Martino P (2015) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol 65:1243–1255CrossRefGoogle Scholar
  35. Miller AZ, Laiz L, Gonzalez JM, Dionísio A, Macedo MF, Saiz-Jimenez C (2008) Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ 405:278–285CrossRefGoogle Scholar
  36. Miller AZ, Sanmartín P, Pereira-Pardo L, Dionísio A, Saiz-Jimenez C, Macedo MF, Prieto B (2012) Bioreceptivity of building stones: a review. Sci Total Environ 426:1–12CrossRefGoogle Scholar
  37. Moroni B, Pitzurra L (2008) Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int Biodeterior Biodegrad 62:391–396CrossRefGoogle Scholar
  38. Noguerol-Seoane A, Rifon-Lastra A (1997) Epilithic phycoflora on monuments. A survey of San Esteban de Ribas de Sil monastery (Ourense, NW Spain). Cryptogam Algol 18:351–361Google Scholar
  39. Ortega-Morales BO, Gaylarde CC, Englert GE, Gaylarde PM (2005) Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, México. Geomicrobiol J 22:261–268CrossRefGoogle Scholar
  40. Ortega-Morales BO, Gaylarde C, Anaya-Hernandez A, Chan-Bacab MJ, De la Rosa-García SC, Arano-Recio D, Montero MJ (2013) Orientation affects Trentepohlia-dominated biofilms on Mayan monuments of the Rio Bec style. Int Biodeterior Biodegrad 84:351–356CrossRefGoogle Scholar
  41. Perez-Monserrat EM, Fort R, Varas-Muriel MJ, de Buergo MA, de los Ríos A, Ascaso C (2013) Physical and aesthetical decay of built heritage from biological films developed on joint mortars. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and technology for the conservation of cultural heritage. CRC Press, London, pp 93–98CrossRefGoogle Scholar
  42. Pinna D (2014) Biofilms and lichens on stone monuments: do they damage or protect? Front Microbiol 5:133CrossRefGoogle Scholar
  43. Rampazzi L, Andreotti A, Bonaduce I, Colombini MP, Colombo C, Toniolo L (2004) Analytical investigation of calcium oxalate films on marble monuments. Talanta 63:967–977CrossRefGoogle Scholar
  44. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • W. S. González-Gómez
    • 1
  • P. Quintana
    • 1
  • S. Gómez-Cornelio
    • 2
  • C. García-Solis
    • 3
  • A. Sierra-Fernandez
    • 4
  • O. Ortega-Morales
    • 5
  • S. C. De la Rosa-García
    • 6
  1. 1.Departamento de Física AplicadaCINVESTAV-IPNMéridaMexico
  2. 2.Departamento de Ingeniería en BiotecnologíaUniversidad Politécnica del CentroCentroMexico
  3. 3.Sección de Conservación y RestauraciónCentro INAH-YucatánMéridaMexico
  4. 4.Instituto de Geociencias (CSIC, UCM)MadridSpain
  5. 5.Departamento de Microbiología Ambiental y BiotecnologíaUniversidad Autónoma de CampecheCampecheMexico
  6. 6.Laboratorio de Microbiología Aplicada, División de Ciencias BiológicasUniversidad Juárez Autónoma de TabascoVillahermosaMexico

Personalised recommendations