Advertisement

Building stones used in the architectural heritage of Morelia (México): quarries location, rock durability and stone compatibility in the monument

  • J. Martínez-Martínez
  • A. Pola
  • L. García-Sánchez
  • G. Reyes Agustin
  • L. S. Osorio Ocampo
  • J. L. Macías Vázquez
  • J. Robles-Camacho
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

Four different rocks have been used in the architectural heritage of Morelia city (Michoacán state, México). Piedra Vieja (PV) is the original building rock whilst Tlalpujahua, Cointzio and Jabalina stones (TL, CO and JA, respectively) are the replacement varieties used in the restoration works during the last decades. All of them correspond to rhyolitic ignimbrites quarried close to Morelia. The new varieties were selected exclusively after aesthetical similarity, and no petrophysical criterion was considered. In this paper, a deep analysis of the weathering process of these rocks during wet–dry and salt crystallization cycles is carried out. Rock decay is defined in terms of linearity and homogeneity: JA and TL show nonlinear decay mode and heterogeneous behaviours, whilst samples of CO and PV weather after linear and homogeneous modes. Moreover, each rock variety shows different decay patterns, such as differential erosion (PV and TL), fractures (TL), scaling (JA) and granular disintegration (CO). All these obtained results are discussed according to: (1) petrographic factors; (2) hydric and mechanical properties; and (3) the partial effective pressures reached inside the porous system of each rock during salt crystallization. Finally, a review about the quality of previously published durability estimators is carried out. In general terms, results reveal that theoretical estimators best fit the visual weathering suffered by the rocks than its mass loss. Concluding this paper, a petrophysical and aesthetical evaluation of the compatibility between both original and replacement building stones used in the architectural heritage of Morelia is carried out in order to offer technical recommendations for future restoration works. CO ignimbrite offers the highest chromatic compatibility with the original building rock (PV), but its durability is extraordinarily low and consequently its use is not recommended. JA and TL are advisable replacement stones, although from a petrophysical point of view, TL results the most convenient. These results highlight the importance of carrying out the selection of building stones for restoration works according to petrophysical criteria, instead of using exclusively an aesthetic valuation.

Keywords

Ignimbrite Salt weathering Wet–dry test Porous media Stone compatibility 

References

  1. Alonso E, Martínez L (2003) The role of environmental sulfur on degradation of ignimbrites of the Cathedral in Morelia, Mexico. Build Environ 38:861–867CrossRefGoogle Scholar
  2. Andriani G, Walsh N (2003) Fabric, porosity and water permeability of calcarenites from Apulia (SE Italy) used as building and ornamental stone. Bull Eng Geol Environ 62(1):77–84Google Scholar
  3. Angeli M, Bigas JP, Menéndez B, Hébert R, David C (2006) Influence of capillary properties and evaporation on salt weathering of sedimentary rocks. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vezquez-Calvo C (eds) Heritage, weathering and conservation. Taylor & Francis/Balkema, Leiden, pp 253–259Google Scholar
  4. Angeli M, Bigas JP, Benavente D, Menéndez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213CrossRefGoogle Scholar
  5. Benavente D, García-del-Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  6. Cardenes V, Mateos FJ, Fernández-Lorenzo S (2014) Analysis of the correlations between freeze–thaw and salt crystallization tests. Environ Earth Sci 71:1123–1134CrossRefGoogle Scholar
  7. Chen TC, Yeung MR, Mori N (2004) Effect of water saturation on deterioration of welded tuff due to freeze–thaw action. Cold Reg Sci Technol 38:127–136CrossRefGoogle Scholar
  8. Cisneros-Máximo G (2015) Estudio geológico-geomorfológico de los volcanes Tetillas-Quinceo. Propuesta de cartografía Jerárquica. Maestría en geografía. Facultad de Filosofía y Letras; Universidad Nacional autónoma de México, Morelia, MichoacánGoogle Scholar
  9. Columbu S, Gioncada A, Lezzerini M, Marchi M (2014) Hydric dilatation of ignimbritic stones used in the church of Santa Maria di Otti (Oschiri, northern Sardinia, Italy). Ital J Geosci 133(1):149–160CrossRefGoogle Scholar
  10. Corona-Chávez P, Mennella L, Salgado-Soto Z, Garduño-Monroy VH (2000) Carta geológico-minera de la hoja Angangueo, escala 1: 50000, con notas explicativas. Consejo de Recursos Minerales-Secofi, MéxicoGoogle Scholar
  11. De la Teja G (2000) Carta geológico-minera de la hoja El Oro, escala 1: 50000, con notas explicativas. Consejo de Recursos Minerales-Secofi, MéxicoGoogle Scholar
  12. Di Benedetto C, Cappelletti P, Favaro M, Graziano SF, Langella A, Calcaterra D, Colella A (2015) Porosity as key factor in the durability of two historical building stones: neapolitan Yellow Tuff and Vicenza Stone. Eng Geol 193:310–319CrossRefGoogle Scholar
  13. Ferrari L, Garduño VH, Pasquaré G, Tibaldi A (1994) Volcanic and tectonic evolution of central México: oligocene to present. Geofis Int 33(1):91–105Google Scholar
  14. Garduño-Monroy VH, Arreygue-Rocha E, Israde-Alcántara I, Rodríguez-Torres G (2001) Efectos de las fallas asociadas a sobreexplotación de acuíferos y la presencia de fallas potencialmente sísmicas en Morelia, Michoacán, México. Revista Mexicana de Ciencias Geológicas 18(1):37–54Google Scholar
  15. Gómez-Vasconcelos MG, Garduño-Monroy VH, Macías JL, Layer PW, Benowitz JA (2015) The Sierra de Mil Cumbres, Michoacán, México: transitional volcanism between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 301:128–147CrossRefGoogle Scholar
  16. Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ Earth Sci 63:1799–1822CrossRefGoogle Scholar
  17. Griffith AA (1924) Theory of rupture. In: Proceedings of 1st international congress of applied mechanics. Delft, pp 55–63Google Scholar
  18. Julia F, Vladimir L, Sergey R, David Z (2014) Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril–Kamchatka Island Arc. Eng Geol 183:80–95CrossRefGoogle Scholar
  19. Korkanç M (2013) Deterioration of different stones used in historical buildings within Nigde province, Cappadocia. Constr Build Mater 48:789–803CrossRefGoogle Scholar
  20. La Iglesia A, González V, López-Acevedo V, Viedma C (1997) Salt crystallization in porous construction materials I. Estimation of crystallization pressure. J Cryst Growth 177(1–2):111–118CrossRefGoogle Scholar
  21. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Pogliani P, Pelosi C, Andaloro M, Crisci GM (2014) Cappadocian ignimbrite cave churches: stone degradation and conservation strategies. Periodico di Mineralogia 83(2):187–206Google Scholar
  22. Leventis A, Verganelakis DA, Halse MR, Webber JB, Strange JH (2000) Capillary imbibition and pore characterization in cement pastes. Transp Porous Media 39:143–157CrossRefGoogle Scholar
  23. López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S (2013) Moisture expansion associated to secondary porosity: an example of the Loseros Tuff of Guanajuato, Mexico. Envorin Earth Sci 69:1189–1201CrossRefGoogle Scholar
  24. López-Doncel R, Wedekind W, Leiser T, Molina-Maldonado S, Velasco-Sánchez A, Dohrmann R, Kral A, Wittenborn A, Aguillón-Robles A, Siegesmund S (2016) Salt bursting tests on volcanic tuff rocks from Mexico. Environ Earth Sci 69:1189–1201CrossRefGoogle Scholar
  25. López-Moreno A, Sepúlveda-Sánchez JD, Alonso Guzmán EM, Le Borgne S (2014) Calcium carbonate precipitation by heterotrophic bacteria isolated from biofilms forme don deteriorated ignimbrite Stones: influence of calcium on EPS production and biofilm formation by these isolates. Biofouling 30(5):547–560CrossRefGoogle Scholar
  26. Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156CrossRefGoogle Scholar
  27. Martínez-Martínez J, Benavente D, García-del-Cura MA (2011) Spatial attenuation: the most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 119:84–95CrossRefGoogle Scholar
  28. Martínez-Martínez J, Benavente D, Gómez-Heras M, Marco-Castaño L, García-del-Cura MA (2013) Non-linear decay of building stones turing freeze–thaw weathering processes. Constr Build Mater 38:443–454CrossRefGoogle Scholar
  29. Mod’d BK, Howarth RJ, Bland CH (1996) Rapid prediction of building research establishment limestone durability class from porosity and saturation. Q J Eng Geol 29:285–297CrossRefGoogle Scholar
  30. Morales-Gámez M, Corona-Chávez P (2006) Geotecnia y problemática de extracción en los bancos de rocas ornamentales de la región de Tlalpujahua. Revista de Investigación de la Universidad Michoacana de San Nicolás de Hidalgo. 43:113–130Google Scholar
  31. Ordóñez S, Fort R, García del Cura MA (1997) Pore size distribution and the durability of a porous limestone. Q J Eng Geol 30:221–230CrossRefGoogle Scholar
  32. Ostrooumov M (2009) A Raman IR and XRD análisis of the deterioration on historical monuments: case study from Mexico. Spectrochimica Acta Part A 73:498–504CrossRefGoogle Scholar
  33. Ostroumov M, Garduño-Monroy VH, Carreón-Nieto H, Lozano-Santa Cruz R (2003) Mineralogía y geoquímica de los procesos de degradación en monumentos históricos: primer acercamiento a un caso mexicano (Morelia, Michoacán). Revista Mexicana de Ciencias Geológicas 20(3):223–232Google Scholar
  34. Özbek A (2014) Investigation of the effect of wetting–drying and freezing–thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull Eng Geol Environ 73:595–609CrossRefGoogle Scholar
  35. Özvan A, Dinçer I, Akin M, Oyan V, Tapan M (2015) Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Eng Geol 185:81–95CrossRefGoogle Scholar
  36. Penide J, Quintero F, Riveiro A, Sánchez-Castillo A, Comesaña R, del Val J, Lusquiños F, Pou J (2013) Removal of graffiti from quarry stone by high power Diode laser. Opt Lasers Eng 51:364–370CrossRefGoogle Scholar
  37. Pereira D, Marker B (2016) The value of original natural stone in the context of architectural heritage. Geosciences 6:1–9CrossRefGoogle Scholar
  38. Pradal E, Robin C (1994) Long-lived magmatic phases at Los Azufres volcanic center, Mexico. J Volcanol Geotherm Res 63:201–215CrossRefGoogle Scholar
  39. Richardson BA (1991) The durability of porous stones. Stone Ind 26(10):22–25Google Scholar
  40. Rodriguez-Navarro C, Dohene E (1999) Salt weathering: influence of evaporite rate, supersaturation and crystallisation pattern. Earth Surf Proc Land 23(3):191–209CrossRefGoogle Scholar
  41. Rozenbaum O, Barbanson L, Muller F, Bruand A (2008) Significance of a combined approach for replacement stones in the heritage buildings’ conservation frame. C.R. Geoscience 340:345–355CrossRefGoogle Scholar
  42. Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geog 32(4):439–461CrossRefGoogle Scholar
  43. Smith BJ, Gomez-Heras M, Viles HA (2010) Underlying issues on the selection, use and conservation of building limestone. London: geological Society. Spec Publ 331:1–11CrossRefGoogle Scholar
  44. Topal T, Doyuran V (1998) Analyses of deterioration of the Cappadocian tuff, Turkey. Environ Geol 34:5–20CrossRefGoogle Scholar
  45. Topal T, Sözmen B (2003) Deterioration mechanisms of tuffs in Midas monument. Eng Geol 68:201–223CrossRefGoogle Scholar
  46. Ulusoy M (2007) Different igneous masonry blocks and salt crystal weathering rates in the architecture of historical city of Konya. Build Environ 42:3014–3024CrossRefGoogle Scholar
  47. UNE-EN 12370 (1999) Natural stone test methods. Determination of resistance to salt crystallisation. European Committee for Standarization, MadridGoogle Scholar
  48. UNE-EN 1925 (1999) Natural stone test method. Determination of water absorption coefficient by capillarity. European Committee for Standarization, MadridGoogle Scholar
  49. UNE-EN 1926 (2007) Natural stone test methods. Determination of uniaxial compressive strength. European Committee for Standarization, MadridGoogle Scholar
  50. UNE-EN (1936) Natural stone test method. Determination of real density and apparent density and of total and open porosity. European Committee for Standarization, MadridGoogle Scholar
  51. Urosevic M, Sebastián E, Cardell C (2013) An experimental study on the influence of surface finishing on the weathering of a building low-porous limestone in coastal environments. Eng Geol 154:131–141CrossRefGoogle Scholar
  52. Vergès-Belmin V (2010) Deterioration of stone in monuments. In: Schrefler B, Delage P (eds) Environmental geomechanics. ISTE Ltd, LondonGoogle Scholar
  53. Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69:1203–1224CrossRefGoogle Scholar
  54. Wellman HW, Wilson AT (1965) Salt weathering, a neglected geological erosive agent in coastal and arid environments. Nature 205:1097–1098CrossRefGoogle Scholar
  55. Yavuz AB (2012) Durability assessment of the Alacti tuff (Izmir) in western Turkey. Environ Earth Sci 67:1909–1925CrossRefGoogle Scholar
  56. Yavuz AB, Akal C, Türk N, Çolak M, Tanyu BF (2015) Investigation of discrepancy between tuff used as building stones in historical and modern buildings in western Turkey. Constr Build Mater 93:439–448CrossRefGoogle Scholar
  57. Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236CrossRefGoogle Scholar
  58. Zedef V, Kocak K, Doyen A, Ozsen H, Kekec B (2007) Effect of salt crystallization on stones of historical building and monuments, Konya, Central Turkey. Build Environ 42:1453–1457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad de AlicanteAlicanteSpain
  2. 2.Spanish Geological Survey (Instituto Geológico y Minero de España, IGME)MadridSpain
  3. 3.Unidad Morelia, Geociencias, Escuela Nacional de Estudios SuperioresUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  4. 4.Instituto de GeofísicaUniversidad Nacional Autónoma de México - Campus MoreliaMoreliaMexico
  5. 5.Instituto de Investigaciones en Ciencias de la TierraUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  6. 6.Laboratorio de Arqueometría del Occidente-Centro INAH MichoacánInstituto Nacional de Antropología e HistoriaMoreliaMexico

Personalised recommendations