Advertisement

Environmental Earth Sciences

, 77:134 | Cite as

Changes in the porosity induced by tillage in typical Argiudolls of southeastern Buenos Aires Province, Argentina, and its relationship with the living space of the mesofauna: a preliminary study

  • Maria Fernanda AlvarezEmail author
  • Margarita Osterrieth
  • Miguel Cooper
Original Article

Abstract

The study of structure is essential to understand the effects of natural and anthropogenic degradation of the environment. Continuous tillage has negative effects on soil structure. The structural heterogeneity of the soil is a key element which makes it possible for several functional groups of organisms to coexist in the soil. Thus, the soil provides a habitat for a vast array of small and large organisms residing permanently or temporarily within it. The aim of our work is to analyze the effect of tillage in typical Argiudolls of Los Padres Pound, in the pores morphology, size and roughness, and its relationship with the potential available habitat space of the mesofauna. We worked on a cultivated plot, for over 40 years, and referencing a plot with non-farmed soils. Size, number, and roughness of pore were determined. For mesofauna, they were taken into account previous studies in these soils. The results of this study proved such influence of tillage on soil structure in the cultivated plot. The modifications of physical properties resulting from tillage are due to the decrease in total porosity and the modification in the type, size, and roughness of the pores. The decrease in total porosity might influence the abundance and diversity of mesofauna in these typical Argiudolls.

Keywords

Land use Pores of soil Architecture of habitat 

Notes

Acknowledgements

The authors thank the Projects ANPCyT (BID-PICT No 2010-2036 y BID-PICT No 2012-2694), Laboratory Department of Soils (ESALQ, University of Sao Paulo, Brazil), Group of Arthropods-Department of Biology (University National of Mar del Plata) and Dra. Verónica Taglioretti for statistical collaboration.

References

  1. Altieri MA (1999) Dimensiones multifuncionales de la agricultura ecológica en América, Latina edn. PED-CLADES/CIED, Lima, PerúGoogle Scholar
  2. Alvarez MF (2009) Efecto de las prácticas agrícolas y forestales sobre las fracciones coloidales en Argiudoles típicos del sudeste bonaerense. FCEyN, Universidad Nacional de Mar del Plata, Argentina, Tesis DoctoralGoogle Scholar
  3. Alvarez MF, Osterrieth M, Bernava Laborde V, Montti L (2008) Estabilidad, morfología y rugosidad de agregados de Argiudoles típicos sometidos a distintos usos: su rol como indicadores de calidad física de suelos, Buenos Aires, Argentina. Ciencia del Suelo 26(2):115–129Google Scholar
  4. Alvarez MF, Osterrieth M, del Río JL (2011) Organic matter fractionation in aggregates typical Argiudolls southeastern Buenos Aires and its relation to different soil uses. A preliminary study. Environ Earth Sci 65(2):505–515CrossRefGoogle Scholar
  5. Alvarez MF, Osterrieth M, del Río JL (2012) Changes on aggregates morphology and roughness of induced by different uses of typical Argiudolls, Buenos Aires province, Argentina. Soil Tillage Res 119:38–49CrossRefGoogle Scholar
  6. Alvarez MF, Osterrieth M, Cooper M (2013) Cambios de porosidad inducidos por la actividad hortícola en Argiudoles típicos de agroecosistemas del sudeste bonaerense y su relación con el hábitat de la mesofauna. Un estudio preliminar. Resúmenes III Congreso de Ecología y Biología de Suelos. Río Cuarto, Córdoba. 39p. Expandido en CDGoogle Scholar
  7. Anderson JM (1988) Spatiotemporal effects of invertebrates on soil processes. Biol Fertil Soils 6:216–227CrossRefGoogle Scholar
  8. Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58:626–639CrossRefGoogle Scholar
  9. Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust N Z J Stat 45:301–318CrossRefGoogle Scholar
  10. Aoki J (1979) Difference in sensitivities of oribatid families to environmental change by human impacts. Revue d’Ecologie et de Biologie du Sol 16(3):415Google Scholar
  11. Aparicio V, Costa JL (2007) Soil quality indicators Ander continuous cropping systems in the Argentinean Pampas. Soil Tillage Res 96:155–165CrossRefGoogle Scholar
  12. Bardgett RD (2002) Causes and consequences of biological diversity in soil. Zoology 105:367–374CrossRefGoogle Scholar
  13. Battigelli J, Spencer R, Langor DW, Berch SM (2004) Shortterm impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can J For Res 34(5):1136–1149CrossRefGoogle Scholar
  14. Baver LD, Gardner WH, y Gardner WR (1973) Física de, suelos edn. Limusa, MéxicoGoogle Scholar
  15. Bedano JC, Ruf A (2007) Soil predatory mite communities (Acari: Gamasina) in agroecosystems of central Argentina. USA. Appl Soil Ecol 36:22–31CrossRefGoogle Scholar
  16. Bedano JC, Arolfo R, Domínguez A (2008) La mesofauna edáfica como indicadora de la degradación del suelo. Resúmenes XXI Congreso Argentino de la Ciencia del Suelo, Expandido en CDGoogle Scholar
  17. Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423CrossRefGoogle Scholar
  18. Berch SM, Battigelli JP, Hope GD (2007) Responses of soil mesofauna communities and oribatid mite species to preparation treatments in high-elevation cutblocks in southern British Columbia. Pedobiología 51:23–32CrossRefGoogle Scholar
  19. Bernava Laborde V, Narciso EN, Alvarez MF, Martínez PA (2013) Evaluación de calidad de suelos a través de mesofauna y estabilidad estructural en huertas agroecológicas y convencionales del sudeste bonaerense. Resúmenes III Congreso de Ecología y Biología de Suelos. Río Cuarto, Córdoba. 17p. Expandido en CDGoogle Scholar
  20. Beylich A, Oberholzer HR, Schrader S, Höper H, Wilke BM (2010) Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res 109:133–143CrossRefGoogle Scholar
  21. Borrelli NL (2001) Minerales, biominerales y su relación con las propiedades físico-químicas de Argiudoles Típicos afectados por prácticas agrícolas en Laguna de Los Padres, Buenos Aires. FCEyN, Universidad Nacional de Mar del Plata, Tesis de gradoGoogle Scholar
  22. Bosch-Serra AD, Padró R, Boixadera-Bosch RR, Orobitg J, Yagüe MR (2014) Tillage and slurry over-fertilization affect oribatid mite communities in a semiarid Mediterranean environment. Appl Soil Ecol 84:124–139CrossRefGoogle Scholar
  23. Camus PA, Lima M (1995) El uso de la experimentación en ecología: supuestos, limitaciones, fuentes de error, y su status como herramienta explicativa. Revista Chilena de Historia Natural 68:19–42Google Scholar
  24. Clapperton MJ, Kanashiro DA, Behan-Pelletier VM (2002) Changes in abundance and diversity of microarthropods associated with Fescue Prairie grazing regimes. Pedobiología 46:496–511CrossRefGoogle Scholar
  25. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E, Plymouth, UKGoogle Scholar
  26. Cooper M, VidalTorrado P, Chaplot V (2005) Origin of microaggregates in soils with ferralic horizons. Scientia Agricola (Piracicaba, Braz.) 62(3):256–263CrossRefGoogle Scholar
  27. Downes BJ, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony, upland stream. Ecol Monogr 68:237–257CrossRefGoogle Scholar
  28. Ducarme XD, Andre HM, Wauthy G, Lebrun P (2004) Are there real endogeic species in temperate forest mites? Pedobiologia 48:139–147CrossRefGoogle Scholar
  29. Duhour A, Costa C, Momo F, Falco L, Malacalza L (2009) Response of earthworm communities to soil disturbance: Fractal dimension of soil and species’ rank-abundance curves. Appl Soil Ecol 43:83–88CrossRefGoogle Scholar
  30. Elissondo E, Costa JL, Suero E, Fabrizzi LP, Garcia F (2001) Evaluación de algunas propiedades físicas del suelo luego de la introducción de labranzas verticales en un suelo bajo siembra directa. Ciencia del Suelo 19(1):11Google Scholar
  31. Estrade JR, Anger C, Bertrand M, Richard G (2010) Tillage and soil ecology: partners for sustainable agriculture. Soil Tillage Res 111:33–40CrossRefGoogle Scholar
  32. Fernández C (1995) Efecto de prácticas agrícolas sobre las propiedades físico-químicas y la distribución y composición faunística de los microartrópodos en un Argiudol típico de Laguna de los Padres. FCEyN, Universidad Nacional de Mar del Plata, Tesis de grado, p 28Google Scholar
  33. Fujita M, Fujiyama S (2001) How can the minor species, Tectocepheus minor (Oribatida), dominate T. velatus in a no-tillage crop field? Pedobiología 45:36–45CrossRefGoogle Scholar
  34. Gulvik ME (2007) Mites (acari) as indicators of soil biodiversity and land use monitoring: a review. Polish J Ecol 55(3):415Google Scholar
  35. Hassink J, Boijwman LA, Zwart KB, Brwsaard L (1993) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Geoderma 57:105–128CrossRefGoogle Scholar
  36. Iglesias J, Galantini J, Santiago L (2007) Cambios en la distribución y orientación de diferentes tamaños de poros. Sistemas Productivos del S y SO bonaerense. RevistaTécnica de Siembra Directa, pp 24–27Google Scholar
  37. INTA-EEA Rafaela (1989) Degradación de los suelos por intensificación de la agricultura. Informe del Taller organizado por CONICET. p 185Google Scholar
  38. Kampichler C (1999) Fractal concepts in studies of fauna. Geoderma 88:283–300CrossRefGoogle Scholar
  39. Kampichler C, Hauser M (1993) Roughness of soil pore surface and its effect on available habitat space of microarthropods. Geoderma 56:223–232CrossRefGoogle Scholar
  40. Kay BD, Vanden Bygaart AJ (2002) Conservation tillage and depth stratification of porosity and soil organic matter. Soil Tillage Res 66:107–118CrossRefGoogle Scholar
  41. Kladivko EJ (2001) Tillage systems and soil ecology. Soil Tillage Res 61:61–76CrossRefGoogle Scholar
  42. Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Technometrics 10:1–11CrossRefGoogle Scholar
  43. Lal R (1991) Soil structure and sustainability. J Sustain Agric I:67–92CrossRefGoogle Scholar
  44. Langmaack M, Schrader S, Rapp-Bernhardt U, Kotzke K (2002) Soil structure rehabilitation of arable soil degraded by compaction. Geoderma 105:141–152CrossRefGoogle Scholar
  45. Larink O (1997) Springtails and mites: important knoots in the food web of soils. In: Benckiser G (ed) Fauna in soil ecosystems: recycling processes, nutrient fluxes, and agricultural production. Books in Soils, Plants and the Enviroment. CRC Press, New York, p 400Google Scholar
  46. Larsen T, Schjønning P, Axelsen J (2004) The impact of soil compaction on euedaphic Collembola. Appl Soil Ecol 26:273–281CrossRefGoogle Scholar
  47. Lavelle P, Bignell D, Lapege M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  48. Legendre P, Legendre L (1998) Numerical ecology, 2 English edn. Elsevier Science B.V., AmsterdamGoogle Scholar
  49. Mac Nally R, Horrocks G (2007) Inducing whole-assemblage change by experimental manipulation of habitat structure. J Anim Ecol 76:643–650CrossRefGoogle Scholar
  50. Maraun M, Salamon JA, Schneider K, Schaefer M, Scheu S (2003) Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biol Biochem 35:1387–1394CrossRefGoogle Scholar
  51. Martinez GA (2001) La influencia de un paisaje heredado sobre el escurrimiento superficial en la Región Pampeana. In: Teruggi L (ed) Workshop Manejo Integral de Cuencas Hidrográficas y Planificación Territorial Necochea, Buenos Aires. pp 47–55Google Scholar
  52. Montti LF (2002) Efecto de las plantaciones de pinos y eucaliptus sobre las propiedades morfológicas físicas y químicas de los Argiudoles típicos en Sierra de los Padres, Bs. As. Tesis de grado.Universidad Nacional de Mar del Plata. p 56Google Scholar
  53. Morse DR, Lawton JH, Dodson MM, Williamson MH (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314:731–733CrossRefGoogle Scholar
  54. Murphy CP (1986) Thin section preparation of soils and sediments. AB Academic Publishers, RothamstedGoogle Scholar
  55. Oades J (1984) Soil organic matter and structural stability, mechanism and implications for management. Plant Soil 76:319–337CrossRefGoogle Scholar
  56. Orellana J, Pilatti M (1994) La estabilidad de agregados como indicador edáfico de sostenibilidad. Ciencia del Suelo 12:75–80Google Scholar
  57. Osterrieth M, Maggi J (1996) Variaciones cuali-cuantitativas de la fracción arcilla en Argiudoles afectados por prácticas agrícolas en Laguna de Los Padres. Buenos Aires. Resúmenes VI Reunión Argentina de Sedimentología, pp 337–342Google Scholar
  58. Osterrieth M, Fernández C, Bilat Y, Martínez P, Martínez G, Trassens M (1998) Geoecología de Argiudoles típicos afectados por prácticas hortícolas en la Llanura Pampeana. Buenos Aires, Argentina. Resúmenes XVI Congreso Mundial de la Ciencia del Suelo. Montpellier, Francia. SIMP. 32. CD: 1–8Google Scholar
  59. Pagliai M, Vignozzi N, Pellegrini S (2004) Soil structure and the effect of management practices. Soil Tillage Res 79:131–143CrossRefGoogle Scholar
  60. Pires LF, Cooper M, Cássaro FAM, Reichardt K, Bacchi OOS, Dias NMP (2008) Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 72(2):297–304CrossRefGoogle Scholar
  61. Porta J, López-Acevedo M, Roquero C (1999) Edafología. Para la agricultura y el medio ambiente. Ed. Mundi-Prensa. EspañaGoogle Scholar
  62. Scampini E (1998) Fauna edáfica y propiedades físicoquímicas del suelo en la bordura entre un área de reserva y un campo cultivado.Tesis de grado. FCEyN, Universidad Nacional de Mar del Plata. p 52Google Scholar
  63. Scampini E, Osterrieth ML, Martinez P (2000) Relación entre propiedades físico-químicas y mesofauna asociada de una bordura en Argiudoles de la Llanura Pampeana. Neotropica 44(111–112):3–12Google Scholar
  64. Secretaría de Agricultura, Ganadería y Pesca (SAGyP), y el Consejo Federal Agropecuario (CFA). (1995) El Deterioro de la Tierras en la República Argentina. Alerta Amarillo. p 287Google Scholar
  65. Socarrás A (2013) Mesofauna edáfica: indicador biológico de la calidad del suelo. Pastos y Forrajes 36(1):5–13Google Scholar
  66. Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. United States Department of Agriculture, Washington D.CGoogle Scholar
  67. Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163CrossRefGoogle Scholar
  68. Travé J (1981) Les biocénoses halophiles d’acariens de l’archipel de Kerguelen. Comité National Français des Recherches Antarctiques (CNFRA) 48:149–158Google Scholar
  69. Underwood AJ (1998) Experiments in ecology: their logical and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  70. Urricariet S, Lavado RS (1999) Indicadores de deterioro en suelos de la Pampa Ondulada. Ciencia del Suelo 17:37–44Google Scholar
  71. Vreeken-Bruijs MJ, Hassink J, Brussaard L (1998) Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil Biol Biochem 30:97–106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Geología de Costas y del Cuaternario (CIC-UNMdP)Mar del PlataArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP)Mar del PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Departamento de Agricultura-ESALQ-Universidad Estadual de San Pablo-BrasilPiracicabaBrazil

Personalised recommendations