Advertisement

Hydrochemistry of shallow groundwater and springs used for potable supply in Southern Brazil

  • Nei K. Leite
  • Joni Stolberg
  • Sonia P. da Cruz
  • Alexandre de O. Tavela
  • José L. Safanelli
  • Helder R. Marchini
  • Ronan Exterkoetter
  • Giovana M. C. Leite
  • Alex V. Krusche
  • Mark S. Johnson
Original Article

Abstract

Landscape characteristics and access type may exert a strong influence on groundwater quality, thereby adversely affecting human health. The aim of this study was to evaluate groundwater quality in springs and shallow wells of rural areas in terms of hydrochemical properties and different water quality indexes by comparing distinct microregions, groundwater sources (springs and shallow wells), and surrounding properties (e.g., presence of livestock, presence of fences, other protection structures, and restrictions on human access). Physical–chemical, chemical, and microbiological parameters were analyzed over 12 months between 2013 and 2014 in the Marombas River basin located in Santa Catarina State, Southern Brazil. Land use and landforms played an important role in controlling groundwater hydrochemistry in rural areas. The type of groundwater source (springs or shallow wells) did not influence water quality, although springs tended to be more susceptible to bacterial contamination, especially in areas with livestock in the surroundings. Chemical relationships allowed classifying these waters as predominantly calcium–magnesium bicarbonate or calcium–magnesium chloride, the latter being the most common in the study region. Groundwater was acidic, with low dissolved salt content, large range in dissolved oxygen concentrations, low turbidity, and presence of fecal coliforms in most studied months. Results indicate that water might be affected by septic tank leakage associated with wastewater and output from agricultural fields, given precarious installation and conservation conditions of springs and shallow wells in this region. When comparing the results with drinking water standards established by Brazilian Health Ministry, 70% of springs and shallow wells were found not suitable for consumption, especially due to organoleptic properties, high aluminum concentrations, and presence of fecal coliforms. Water quality indexes demonstrated that groundwater is suitable for agricultural uses (irrigation, livestock, and fish farming) and drinking, if treated via disinfection, filtering, or boiling before consumption. Nevertheless, use of this water resource, especially without any treatment—as is currently common among users—raises concerns related to its susceptibility to spread waterborne diseases, and lack of information among water users regarding procedures to improve water quality.

Keywords

Groundwater quality Rural groundwater uses Shallow wells Land use Multivariate statistics 

Notes

Acknowledgements

We would like to thank farmers who allowed us to perform field activities in their properties. We also thank A. Montebello for support with chemical analysis, L. Guisolphi, L. Pocai, and J. Klein in field campaigns and Grupo de Pesquisa em Análise Socioambiental no Planalto Catarinense. Funding was granted by Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina—FAPESC (Grant No. 3474/2012), and logistic support was provided by UFSC—Campus Curitibanos.

References

  1. Abbasi T, Abbasi AS (2012) Water quality indices, 1st edn. Elsevier, OxfordGoogle Scholar
  2. Ahada CP, Suthar S (2017) Hydrochemistry of groundwater in North Rajasthan, India: chemical and multivariate analysis. Environ Earth Sci 76:203CrossRefGoogle Scholar
  3. Ako AA, Shimada J, Hosono T, Ichiyanagi K, Nkeng GE, Fantong WY, Eyong GE, Roger NN (2011) Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environ Geochem Health 33:559–575CrossRefGoogle Scholar
  4. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728CrossRefGoogle Scholar
  5. Andrade EM, Palácio HAQ, Souza IH, de Oliveira Leão RA, Guerreiro MJ (2008) Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. Environ Res 106:170–177CrossRefGoogle Scholar
  6. Anzecc A (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, pp 1–103Google Scholar
  7. APHA—American Public Health Association (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, WashingtonGoogle Scholar
  8. Berner EK, Berner RA (1995) Global environment: water, air, and geochemical cycles, 1st edn. Prentice Hall, EnglewoodGoogle Scholar
  9. Bertossi APA, Cecílio RA, Neves MA, Garcia GO (2013) Qualidade da água em microbacias hidrográficas com diferentes coberturas do solo no sul do Espírito Santo. Rev Arvore 37:107–117CrossRefGoogle Scholar
  10. Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ (2014) Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci 6:62Google Scholar
  11. Bhattacharjya H, Das SK, Majumder T, Mukhopadhyay BB, Baidya S, Debbarman DK (2017) Bacteriological quality of water and diarrhoea among ethnic and non-ethnic communities of rural area of West Tripura, India. Int J Res Med Sci 5:1275–1281CrossRefGoogle Scholar
  12. BRAZIL. Ministry of Health. Ordinance no 2.914, 12 December 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. http://www.cvs.saude.sp.gov.br/zip/Portaria_MS_2914-11.pdf/. Accessed 10 March 2017
  13. Cardoso FBF, Oliveira FR, Varella Neto PL, Ranielle NP (2007) Mapa dos domínios hidrogeológicos de Santa Catarina: uma ferramenta para gestão das águas subterrâneas do estado. In: XV Encontro Nacional de Perfuradores de Poços e I Simpósio de Hidrogeologia Sul-Sudeste. Brazilian Association of Groundwater/ABAS, GramadoGoogle Scholar
  14. Celligoi A (1999) Considerações sobre análises químicas de águas subterrâneas. Geografia 8:91–97Google Scholar
  15. CETESB—Companhia de Tecnologia de Saneamento Ambiental (2008) Relatório de Qualidade das Águas Interiores do Estado de São Paulo. Secretary of State for Environment, São PauloGoogle Scholar
  16. Colvara JG, Lima AS, Silva WP (2009) Avaliação da contaminação de água subterrânea em poços artesianos no sul de Rio Grande do Sul. Braz J Food Technol 2:11–14Google Scholar
  17. Custodio E, Llamas MR (1983) Hidrologia subterrânea, 2nd edn. Editora Omega, BarcelonaGoogle Scholar
  18. Di Bernardo L, Dantas ADB (2005) Métodos e técnicas de tratamento de água, 2nd edn. RIMA, Rio de JaneiroGoogle Scholar
  19. EMBRAPA (2004) Solos do Estado de Santa Catarina (Boletim de desenvolvimento e pesquisa). Embrapa Solos—CNPS, Rio de JaneiroGoogle Scholar
  20. EPAGRI/CEPA (2017) Síntese Anual da Agricultura de Santa Catarina 2012–2013. http://docweb.epagri.sc.gov.br/website_cepa/publicacoes/sintese_2013.pdf/. Accessed 23 Oct 2017
  21. Esrey SA, Habicht JP (1986) Epidemiologic evidence for health benefits from improved water and sanitation in developing countries. Epidemiol Rev 8:117–128CrossRefGoogle Scholar
  22. Friendly M, Fox J (2016) Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.7-0. https://CRAN.R-project.org/package=candisc
  23. Giordano M, Villholth KG (2007) The agricultural groundwater revolution: opportunities and threats to development, vol 3. CABI, WallingfordCrossRefGoogle Scholar
  24. Giridharan L, Venugopal T, Jayaprakash M (2008) Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environ Monit Assess 143:161–178CrossRefGoogle Scholar
  25. Gutchess K, Jin L, Lautz L, Shaw SB, Zhou X, Lu Z (2016) Chloride sources in urban and rural headwater catchments, central New York. Sci Total Environ 565:462–472CrossRefGoogle Scholar
  26. Heckman CW, Dos Campos JLE, Hardoim EL (1997) Nitrite concentration in well water from Poconé, Mato Grosso, and its relationship to public health in rural Brazil. Bull Environ Contam Toxicol 58:8–15CrossRefGoogle Scholar
  27. IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saneamento Básico (2000). http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb/pnsb.pdf/. Accessed 23 Oct 2017
  28. Idrus AS, Fauziah MN, Hani MH, Wan Rohaila WA, Wan Mansor H (2014) Status of groundwater contamination in rural area, Kelantan. IOSR J Environ Sci Toxicol Food Technol 8:72–80Google Scholar
  29. Jalali M (2011) Hydrogeochemistry of groundwater and its suitability for drinking and agricultural use in Nahavand, Western Iran. Nat Resour Res 20:65–73CrossRefGoogle Scholar
  30. Kalff J (2002) Limnology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  31. Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516CrossRefGoogle Scholar
  32. Knobeloch L, Gorski P, Christenson M, Anderson H (2013) Private drinking water quality in rural Wisconsin. J Environ Health 75:16–20Google Scholar
  33. Krishnakumar P, Lakshumanan C, Kishore VP, Sundararajan M, Santhiya G, Chidambaram S (2014) Assessment of groundwater quality in and around Vedaraniyam, South India. Environ Earth Sci 71:2211CrossRefGoogle Scholar
  34. Kulabako NR, Nalunega M, Thuhunvik R (2007) Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda. Sci Total Environ 381:180–199CrossRefGoogle Scholar
  35. Lautz LK, Hoke GD, Lu Z, Siegel DI, Christian K, Kessler JD, Teale NG (2014) Using discriminant analysis to determine sources of salinity in shallow groundwater prior to hydraulic fracturing. Environ Sci Technol 48:9061–9069CrossRefGoogle Scholar
  36. Leite NK, Krusche AV, Cabiachi GM, Ballester MVR, Victoria RL, Marchetto M, Santos JG (2011) Groundwater quality comparison between rural farms and riparian wells in the western Amazon, Brazil. Quim Nova 34:11–15CrossRefGoogle Scholar
  37. Lerner DN, Harris B (2009) The relationship between land use and groundwater resources and quality. Land Use Policy 26S:S265–S273CrossRefGoogle Scholar
  38. Li P (2016) Groundwater quality in Western China: challenges and paths forward for groundwater quality research in Western China. Expo Health 8(3):305–310CrossRefGoogle Scholar
  39. Li P, Qian H, Wu J (2010) Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E J Chem 7(S1):S209–S216CrossRefGoogle Scholar
  40. Li P, Wu J, Qian H (2012) Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environ Monit Assess 184(8):4841–4854CrossRefGoogle Scholar
  41. Li P, Wu J, Qian H (2013) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225CrossRefGoogle Scholar
  42. Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712CrossRefGoogle Scholar
  43. Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expo Health 8(3):331–348CrossRefGoogle Scholar
  44. Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–13234CrossRefGoogle Scholar
  45. Lopes CRM, Dias FWC, Cavalgante IN, De Souza AKP (2001) Hidrogeologia do município de Juazeiro do Norte, Estado do Ceará. XII Encontro Nacional de Perfuradores de Poços. ABAS, São PauloGoogle Scholar
  46. Machado JLF (2013) Hydrogeological map of Santa Catarina State. Geological Survey of Brazil, Porto AlegreGoogle Scholar
  47. Mackintosh G, Colvin C (2003) Failure of rural schemes in South Africa to provide potable water. Environ Geol 44:101–105Google Scholar
  48. Manoel Filho J (2000) Contaminação das águas subterrâneas. In: Feitosa FAC, Manoel Filho J (eds) Hidrogeologia: Conceitos e Aplicações, 2nd edn. CPRM/REFO, LABHID-UFPE, Fortaleza, pp 109–132Google Scholar
  49. Matthess G (1982) The properties of groundwater. Wiley, New YorkGoogle Scholar
  50. Mellander PE, Melland AR, Murphy PNC, Wall DP, Shortle G, Jordan P (2014) Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. J Agric Sci 152:107–124CrossRefGoogle Scholar
  51. Mohammadi F, Ehteshami M, Mirbagheri SA, Tavassoli S (2017) Monitoring groundwater and its suitability for drinking and irrigation purposes in the Sharif Abad Basin, Central Iran. World J Eng Technol 5:487–506CrossRefGoogle Scholar
  52. National Water Agency (NWA) (2011) Guia de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. CETESB, São PauloGoogle Scholar
  53. National Water Agency (NWA) (2017) Hydrological information system. http://hidroweb.ana.gov.br/HidroWeb. Accessed 1 Mar 2017
  54. Nunes AP, Lopes LG, Pinto FR, Amaral LA (2010) Qualidade da água subterrânea e percepção dos consumidores em propriedades rurais. Nucleus 7:95–104Google Scholar
  55. Odagiri M, Schriewer A, Daniels ME, Wuertz S, Smith WA, Clasen T, Schmidt WP, Jin Y, Torondel B, Misra PR, Panigrahi P, Jenkins MW (2016) Human fecal and pathogen exposure pathways in rural Indian villages and the effect of increased latrine coverage. Water Res 100:232–244CrossRefGoogle Scholar
  56. Oliveira IB, Negrão FI, Silva AGLS (2007) Mapeamento dos Aquíferos do Estado da Bahia utilizando o Índice de Qualidade Natural das Águas Subterrâneas—IQNAS. Rev Cient Agua Subter 21:123–137Google Scholar
  57. Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–928CrossRefGoogle Scholar
  58. Poonam T, Tanushree B, Sukalyan C (2013) Water quality indices—important tools for water quality assessment: a review. Int J Adv Chem 1:15–28Google Scholar
  59. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  60. Rao NS (2006) Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ Geol 49:413–429CrossRefGoogle Scholar
  61. Rebouças AC, Amore L (2002) O Sistema Aqüifero Guarani—SAG. Rev Águas Sub 16:135–143Google Scholar
  62. Rietveld LC, Haarhoff J, Jagals P (2009) A tool for technical assessment of rural water supply systems in South Africa. Phys Chem Earth 34:43–49CrossRefGoogle Scholar
  63. Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152:59–66CrossRefGoogle Scholar
  64. Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496CrossRefGoogle Scholar
  65. Sadeghi GH, Mohammadian M, Nourani M, Peyda M, Eslami A (2007) Microbiological quality assessment of rural drinking water supplies in Iran. J Agric Soc Sci 3:31–33Google Scholar
  66. Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of groundwater quality index. Environ Monit Assess 163:327–335CrossRefGoogle Scholar
  67. Santos AC (2008) Noções de Hidroquímica. In: Feitosa FAC, Manoel Filho J (eds) Hidrogeologia: Conceitos e Aplicações, 3rd edn. CPRM/REFO, LABHID-UFPE, Fortaleza, pp 81–107Google Scholar
  68. Santos LV, Polivanov H, Alamino RCJ, Silva VHG (2006) Adsorção de cloreto e potássio em solos tropicais. Anu Inst Geo UFRJ 29:101–121Google Scholar
  69. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593CrossRefGoogle Scholar
  70. Silva FOE, Heikkila T, Souza Filho FDA, Costa da Silva D (2013) Developing sustainable and replicable water supply systems in rural communities in Brazil. Int J Water Resour D 29:622–635CrossRefGoogle Scholar
  71. Sjöström J (1994) Aluminium and sulphate in acidic soils and groundwaters on the Swedish west coast. Water Air Soil Pollut 75:127–139CrossRefGoogle Scholar
  72. Srinivasamoorthy K, Gopinath M, Chidambaram S, Vasanthavigar M, Sarma VS (2014) Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. JKSUS 26:37–52Google Scholar
  73. Szikszay M (1993) Geoquímica das águas. Boletim IG-USP. Série Didática no 5Google Scholar
  74. Taiwo AM, Towolawi AT, Olanigan AA, Olujimi OO, Arowolo TA (2015) Comparative assessment of groundwater quality in rural and urban areas of Nigeria. In research and practices in water quality. In: Lee TS (ed) Research and practices in water quality. InTech, London, pp 179–191Google Scholar
  75. Ten Caten A, Safanelli JL, Ruiz LFC (2015) Mapeamento multitemporal da cobertura de terra, por meio de árvore de decisão, na bacia hidrográfica do rio Marombas-SC. Eng Agric 35:1198–1209Google Scholar
  76. Tomodiatounga DN, Mabiala B, Nkaya GM (2016) Hydrochemical characteristics of the groundwater AQ1 of the region from Pointe-Noire to Congo Brazzaville. J Geosci Environ Prot 4:95Google Scholar
  77. US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60. U.S. Government Printing Office. Washington, DCGoogle Scholar
  78. Varol S, Davraz A (2015) Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environ Earth Sci 73:1725–1744CrossRefGoogle Scholar
  79. Venkatramanan S, Chung SY, Ramkumar T, Gnanachandrasamy G, Vasudevan S (2013) A multivariate statistical approaches on physicochemical characteristics of ground water in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, India. Earth Sci Res J 17:97–103Google Scholar
  80. Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402CrossRefGoogle Scholar
  81. World Health Organization (WHO) (2011) Guidelines for drinking-water quality. Health criteria and other supporting information. WHO, GenevaGoogle Scholar
  82. World Quality Association (WQA) (2017) The glossary of salt water. Published by the Water Quality Association. https://www.wqa.org/
  83. Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health 8(3):311–329CrossRefGoogle Scholar
  84. Wu J, Li P, Qian H (2011) Groundwater quality in Jingyuan County, a semi-humid area in Northwest China. E J Chem 8(2):787–793CrossRefGoogle Scholar
  85. Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nei K. Leite
    • 1
  • Joni Stolberg
    • 2
  • Sonia P. da Cruz
    • 2
  • Alexandre de O. Tavela
    • 2
  • José L. Safanelli
    • 3
  • Helder R. Marchini
    • 2
  • Ronan Exterkoetter
    • 4
  • Giovana M. C. Leite
    • 5
  • Alex V. Krusche
    • 6
  • Mark S. Johnson
    • 7
  1. 1.Departamento de Ecologia e ZoologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Centro de Ciências RuraisUniversidade Federal de Santa CatarinaCuritibanosBrazil
  3. 3.Escola Superior de Agricultura Luiz de QueirozUniversidade de São PauloPiracicabaBrazil
  4. 4.Departamento de Ciência do SoloUniversidade Federal do ParanáCuritibaBrazil
  5. 5.Departamento de Metodologia de EnsinoUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  6. 6.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  7. 7.Institute for Resources, Environment and SustainabilityUniversity of British ColumbiaVancouverCanada

Personalised recommendations