Heavy metal pollution in the soil surrounding a thermal power plant in Playas de Rosarito, Mexico

  • M. A. Pastrana-Corral
  • F. T. Wakida
  • J. Temores-Peña
  • D. D. Rodriguez-Mendivil
  • E. García-Flores
  • T. D. J. Piñon-Colin
  • A. Quiñonez-Plaza
Original Article

Abstract

The generation of electricity has been identified as one of the main pollutant activities, and some studies have established an increment of heavy metals in soil in the areas surrounding these plants. The aim of this study was to evaluate the soil concentrations of heavy metals in the zone surrounding a thermoelectric power in Mexico. Thirty-two top soil samples (0–5 cm) were collected; additionally, four depth profiles (1 m) were investigated. Median concentrations for chromium, vanadium, nickel, mercury, and cadmium were 47, 47, 73, 0.02, and 0.01 mg/kg, respectively. Higher Cr, Ni, and V concentrations were observed in the soil depth profiles located closer to the plant in comparison with the concentrations found in the soil depth profile located further away from the plant; these results may indicate a possible accumulation of these metals. The geoaccumulation index results indicated that most of the sites were in the classifications of unpolluted and unpolluted to moderately polluted (classes 1 and 2). The statistical results showed that downwind of the plant in relation to the prevailing winds, there was a strong correlation between soil concentrations of chromium, copper, nickel, and vanadium. Based on the results of this study, it can be concluded that the use of fuel oil at the thermoelectric plant contributed to the accumulation of vanadium and nickel in the soil of the surrounding areas, as well as chromium and copper.

Keywords

Fuel oil Vanadium Environmental impact Fly ash Geoaccumulation 

Notes

Acknowledgements

This research was supported by Universidad Autónoma de Baja California (UABC) through 18va internal competition of research Grants No 3884. This paper is part of the doctoral research by M.A. Pastrana-Corral at the MYDCI doctoral program at Universidad Autónoma de Baja California.

Supplementary material

12665_2017_6928_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)
12665_2017_6928_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 kb)

References

  1. Agrawal P, Mittal A, Prakash R, Kumar M, Singh TB, Tripathi SK (2010) Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli Region of India. Bull Environ Contam Toxicol 85:219–223. doi: 10.1007/s00128-010-0043-8 CrossRefGoogle Scholar
  2. Al-Degs Y, Ghrir A, Khoury H, Walker GM, Sunjuk M, Al-Ghouti MA (2014) Characterization and utilization of fly ash of heavy fuel oil generated in power stations. Fuel Process Technol 123:41–46. doi: 10.1016/j.fuproc.2014.01.040 CrossRefGoogle Scholar
  3. Alonso-Hernández CM, Bernal-Castillo J, Bolaños-Alvarez Y, Gómez-Batista M, Diaz-Asencio M (2011) Heavy metal content of bottom ashes from a fuel oil power plant and oil refinery in Cuba. Fuel 90:2820–2823. doi: 10.1016/j.fuel.2011.03.014 CrossRefGoogle Scholar
  4. An Q, Wu Y, Wang J, Li Z (2009) Heavy metals and polychlorinated biphenyls in sediments of the Yangtze River estuary, China. Environ Earth Sci 59:363–370. doi: 10.1007/s12665-009-0034-4 CrossRefGoogle Scholar
  5. Bailie A, Trinka D, Grier J, Coltman K (2000) Guide to world crudes. Oil Gas J 59(9):1–8 http://www.ogj.com/articles/print/volume-98/issue-20/processing/guide-to-world-crudes.html. Accessed 17 April 2017
  6. Bertani R, Lund J (2013) World energy resources, 2013 survey: summary. Chapter 9, World energy council, 1–62. http://www.worldenergy.org/wp-content/uploads/2013/09/WER_2013_9_Geothermalpdf. Accessed 10 Jan 2015
  7. BLM (Bureau of Land Management) (2010) Burning electrical wires a growing concern on public lands. News Release No. CA-CDD- 10-77. http://www.blm.gov/ca/st/en/info/newsroom/2010/june/CDD1077_burning_wires_concern.html. Accessed 16 Aug 2015
  8. Buat-Menard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42(3):399–411. doi: 10.1016/0012-821X(79)90049-9 CrossRefGoogle Scholar
  9. CFE (2014) Informe Anual 2014, Comisión Federal de Electricidad, Secretaría de Energía de los Estados Unidos Mexicanos. http://aplicaciones.cfe.gob.mx/Aplicaciones/OTROS/InformeAnualConFirmas2014.pdf. Accessed 2 Sept 2015
  10. Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Saf 87:57–64. doi: 10.1016/j.ecoenv.2012.08.032 CrossRefGoogle Scholar
  11. Chacon D, Giner ME, Vazquez M, Roe S, Maldonado JA, Lindquist H, Strode B, Anderson R, Quiroz C, Schreiber J (2010) Greenhouse gas emissions in Baja California and reference case projections 1990–2025, 1a edn. Comision de Cooperacion Ecologica Fronteriza and Border Environment Cooperation Commission, Texas, pp 46–49Google Scholar
  12. CONCAWE (1998) Heavy fuel oils. CONCAWE's, Product dossier no. 98/109. Brussels, BelgiumGoogle Scholar
  13. Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B (2017) Environmental assessment of heavy metals around the largest coal fired power plant in Serbia. CATENA 148:26–34CrossRefGoogle Scholar
  14. Diego-Marin A, Salinas-Bravo VM, Porcayo-C J (2001) Uso de crudo maya despuntado como combustible alterno al combustóleo (the use of Maya crude as an alternative to fuel oil). Instituto Nacional de Electricidad y Energía Limpias (INEEL), Secretaría de energía (SENER)/Boletín IIE 25(3):126–230. https://www.ineel.mx/2001c/tenden.pdf. Accessed 17 April 2017
  15. Förstner U, Ahlf W, Calmano W, Kersten M (1990) Sediment criteria development. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sediment and environmental geochemistry. Springer, Berlin Heidelberg, pp 311–338CrossRefGoogle Scholar
  16. Ganor E, Altshuller S, Foner HA, Brenner S, Gabbay J (1988) Vanadium and nickel in dustfall as indicators of power plant pollution. Water Air Soil Poll 42:241–252. doi: 10.1007/BF00279270 Google Scholar
  17. Gobierno de Baja California (2012) PROAIRE, Programa para mejorar la calidad de aire de la Zona Metropolitana de Tijuana, Tecate y Playas de Rosarito 2012–2020 (Program to improve the air quality of Tijuana, Tecate and Playas de Rosarito 2012–2020). SEMARNAT, Gobierno del Estado de Baja California, Mexico. https://www.gob.mx/cms/uploads/attachment/file/69288/9_ProAire_ZMT.pdf. Accessed 19 May 2015
  18. Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci 24(3):410–418. doi: 10.1016/S1001-0742(11)60762-6 CrossRefGoogle Scholar
  19. Hernandez L, Probst A, Probst JL, Ulrich E (2003) Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Sci Total Environ 312:195–219. doi: 10.1016/S0048-9697(03)00223-7 CrossRefGoogle Scholar
  20. Hinkle D, Wiersma W, Jurs S (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin Co., BostonGoogle Scholar
  21. INEGI (2011) Instituto Nacional de Estadística y Geografía, México en Cifras. Información Nacional, por Entidad Federativa y Municipios. Playas de Rosarito, Baja California. http://www3.inegi.org.mx/sistemas/mexicocifras/default.aspx?src=487&e=2 Accessed 22 May 2015
  22. Kamal I (1995) An assessment of desalination technology for the Rosarito repowering project. Desalination 102:269–278. doi: 10.1016/0011-9164(95)00063-8 CrossRefGoogle Scholar
  23. Krishna AK, Govil PK (2007) Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ Monit 124:263–275. doi: 10.1007/s10661-006-9224-7 CrossRefGoogle Scholar
  24. Lario J, Alonso-Azcárate J, Spencer C, Zazo C, Goy JL, Cabero A, Dabrio CJ, Borja F, Borja C, Civis J, García-Ródriguez M (2016) Evolution of the pollution in the Piedras River Natural Site (Gulf of Cadiz, southern Spain) during the Holocene. Environ Earth Sci 75:481. doi: 10.1007/s12665-016-5344-8 CrossRefGoogle Scholar
  25. Lu X, Liu W, Zhao C, Chen C (2013) Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China. J Radioanal Nucl Chem 295:1845–1854. doi: 10.1007/s10967-012-2241-9 CrossRefGoogle Scholar
  26. Machado A, García N, García C, Acosta L, Córdova A, Linares M, Giraldoth D, Velasquez H (2008) Contaminación por metales (Pb, Zn, Ni y Cr) en aire, sedimentos viales y suelo en una zona de alto tráfico vehicular. Rev Int Contam Ambie 24(4):171–182 (issn: 0188-4999) Google Scholar
  27. Mandal A, Sengupta D (2006) An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environ Geol 51(3):409–420. doi: 10.1007/s00254-006-0336-8 CrossRefGoogle Scholar
  28. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243. doi: 10.1016/S0048-9697(02)00273-5 CrossRefGoogle Scholar
  29. Mazhaiskii YA, Zakharova OA, Evtyukhin VF, Tobratov SA (2000) Pollution in the zone around Ryazan power station. Chem Petrol Eng 36:9–10. doi: 10.1023/A:1002828513234 CrossRefGoogle Scholar
  30. Mirsal IA (2004) Sources of soil pollution. In: Mirsal IA (ed) Soil pollution: origin, monitoring and remediation, 3rd edn. Springer, Berlin, Heidelberg, pp 147–149CrossRefGoogle Scholar
  31. Mofarrah A, Husain T (2013) Use of heavy oil fly ash as a color ingredient in cement mortar. Int J Concrete Struct Mater 7(2):111–117. doi: 10.1007/s40069-013-0042-3 CrossRefGoogle Scholar
  32. Muller G (1969) Index of geoaccumulation in sediments of Rhine River. Geol J 2(3):108–118Google Scholar
  33. Naja GM, Volesky B (2002) Toxicity and Sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In: Nazih K, Shammas YH, Jiaping PC, Wang LK (eds) Heavy metals in the environment. CRC Press, Marcel Dekker, Inc., Ottawa, pp 14–18Google Scholar
  34. Nanos N, Grigoratos T, Rodríguez Martín JA, Samara C (2015) Scale-dependent correlations between soil heavy metals and as around four coal-fired power plants of northern Greece. Stoch Environ Res Risk Assess 29:1531–1543. doi: 10.1007/s00477-014-0991-3 CrossRefGoogle Scholar
  35. Nava-Martinez E, Garcia-Flores E, Espinoza-Gomez H, Wakida FT (2012) Heavy metals pollution in the soil of an irregular urban settlement built on a former dumpsite in the city of Tijuana, Mexico. Environ Earth Sci 66:1239–1335. doi: 10.1007/s12665-011-1335-y CrossRefGoogle Scholar
  36. Navarro R, Guzman J, Saucedo I, Revilla J, Guibal E (2007) Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manag 27:425–438CrossRefGoogle Scholar
  37. Özkul C (2016) Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environ Monit Assess 188:284. doi: 10.1007/s10661-016-5295-2 CrossRefGoogle Scholar
  38. Pal SK, Wallis SG, Arthur S (2011) Assessment of heavy metals emission from traffic on road surfaces. Cent Eur J Chem 9(2):314–319. doi: 10.2478/s11532-011-0005-y CrossRefGoogle Scholar
  39. Pastrana-Corral MA, Wakida FT, García-Flores E, Rodriguez-Mendivil DD, Quiñonez-Plaza A, Piñon-Colin TDJ (2016) Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, Mexico. Environ Monit Assess 188:466. doi: 10.1007/s10661-016-5474-1 CrossRefGoogle Scholar
  40. Quiñonez-Plaza A, Wakida FT, Temores-Peña J, Rodriguez-Mendivil DD, Garcia-Flores E, Pastrana-Corral MA, Melendez-Lopez SG (2017) Total petroleum hydrocarbons and heavy metals in road-deposited sediments in Tijuana. J Soils Sedim, Mexico. doi: 10.1007/s11368-017-1778-1 Google Scholar
  41. Reddy MS, Basha S, Joshi HV, Jha B (2005) Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion. J Hazard Mater B123:242–249. doi: 10.1016/j.jhazmat.2005.04.008 CrossRefGoogle Scholar
  42. Rowell DL (1994) Soil science: methods and applications. Addison, Wesley, LondonGoogle Scholar
  43. SENER (2012) Prospectiva del sector eléctrico 2012–2026 (electricity sector outlook), Secretaría de Energía 1–237, https://noalamatgirona.files.wordpress.com/2013/07/prospectivasectorelectrico_2012_2026.pdf. Accessed 7 Aug 2015
  44. Stafilov T (2014) Environmental pollution with heavy metals in the Republic of Macedonia. Contrib Maced Acad Sci Arts Sect Nat Math Biotech Sci 35(2):81–119Google Scholar
  45. Tijhuis L, Brattli B, Sæther OM (2002) A geochemical survey of topsoil in the city of Oslo, Norway. Environ Geochem Health 24(1):67–94. doi: 10.1023/A:1013979700212 CrossRefGoogle Scholar
  46. Vasić MV, Mihailović A, Kozmidis-Luburić U, Nemes T, Ninkov J, Zeremski-Škorić T, Antić B (2012) Metal contamination of short-term snow cover near urban crossroads: correlation analysis of metal content and fine particles distribution. Chemosphere 86:585–592. doi: 10.1016/j.chemosphere.2011.10.023 CrossRefGoogle Scholar
  47. Wakida FT, Lerner DN (2006) Potential nitrate leaching to groundwater from house building. Hydrol Process 20:2077–2081. doi: 10.1002/hyp.6143 CrossRefGoogle Scholar
  48. Wakida FT, Lara-Ruiz D, Temores-Peña J, Rodriguez-Ventura G, Diaz C, Garcia-Flores E (2008) Heavy metals in sediments of the Tecate River. Environ Geol 54:637–642. doi: 10.1007/s00254-007-0831-6 CrossRefGoogle Scholar
  49. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–263CrossRefGoogle Scholar
  50. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res 2011:1–20. doi: 10.5402/2011/402647 Google Scholar
  51. Yaron B, Dror I, Berkowitz B (2012) Soil-subsurface change: chemical pollutant impacts. Springer, BerlinCrossRefGoogle Scholar
  52. Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070. doi: 10.1006/ecss.2001.0879 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. A. Pastrana-Corral
    • 1
  • F. T. Wakida
    • 1
  • J. Temores-Peña
    • 1
  • D. D. Rodriguez-Mendivil
    • 1
  • E. García-Flores
    • 1
  • T. D. J. Piñon-Colin
    • 1
  • A. Quiñonez-Plaza
    • 1
  1. 1.Universidad Autonoma de Baja CaliforniaTijuanaMexico

Personalised recommendations