Advertisement

Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran

  • Amir Asadi VaighanEmail author
  • Nasser Talebbeydokhti
  • Alireza Massah Bavani
Original Article

Abstract

This research addressed the separate and combined impacts of climate and land use change on streamflow, suspended sediment and water quality in the Kor River Basin, Southwest of Iran, using (BASINS–WinHSPF) model. The model was calibrated and validated for hydrology, sediment and water quality for the period 2003–2012. The model was run under two climate changes, two land use changes and four combined change scenarios for near-future period (2020–2049). The results revealed that projected climate change impacts include an increase in streamflow (maximum increases of 52% under RCP 2.6 in December and 170% under RCP 8.5). Projected sediment concentrations under climate change scenarios showed a monthly average decrease of 10%. For land use change scenarios, agricultural development scenario indicated an opposite direction of changes in orthophosphate (increases in all months with an average increase of 6% under agricultural development scenario), leading to the conclusion that land use change is the dominant factor in nutrient concentration changes. Combined impacts results indicated that streamflows in late fall and winter months increased while in summer and early fall decreased. Suspended sediment and orthophosphate concentrations were decreased in all months except for increases in suspended sediment concentrations in September and October and orthophosphate concentrations in late winter and early spring due to the impact of land use change scenarios.

Keywords

Climate change Land use change Hydrological modeling Water quality Kor River Iran 

References

  1. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45:1–16. doi: 10.1029/2008WR007615 CrossRefGoogle Scholar
  2. Albek M, Albek E (2003) Predicting the effects of climate change on the sediment yield of watersheds. In: Diffuse pollution conference dublin 2003 3G: Agriculture, pp 137–142Google Scholar
  3. Astaraie-Imani M, Kapelan Z, Fu G, Butler D (2012) Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J Environ Manag 112:1–9. doi: 10.1016/j.jenvman.2012.06.039 CrossRefGoogle Scholar
  4. Bicknell BR, Imhoff JC, Kittle Jr JL, Jobes TH, Donigian Jr AS (2001) Hydrological simulation program—FORTRAN (HSPF) Version 12, User’s Manual, 2001Google Scholar
  5. Cox BA, Whitehead PG (2009) Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrol Res 40:138. doi: 10.2166/nh.2009.096 CrossRefGoogle Scholar
  6. Crossman J, Futter MN, Oni SK, Whitehead PG, Jin L, Butterfield D, Baulch HM, Dillon PJ (2013) Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada. J Great Lakes Res 39:19–32. doi: 10.1016/j.jglr.2012.11.003 CrossRefGoogle Scholar
  7. Dixon B, Earls J (2012) Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Appl Geogr 35:174–190. doi: 10.1016/j.apgeog.2012.06.010 CrossRefGoogle Scholar
  8. Duda PB, Hummel PR, Donigian ASJ, Imhoff JC (2012) Basins/Hspf: model use, calibration, and validation. Trans Asabe 55:1523–1547. doi: 10.13031/2013.42261 CrossRefGoogle Scholar
  9. El-Khoury A, Seidou O, Lapen DRL, Que Z, Mohammadian M, Sunohara M, Bahram D (2015) Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J Environ Manag 151:76–86. doi: 10.1016/j.jenvman.2014.12.012 CrossRefGoogle Scholar
  10. Etemadi H, Samadi SZ, Sharifikia M (2012) Stastistical downscaling of climate variables in Shadegan Wetland, Iran. Sci Rep 1:1–9. doi: 10.4172/scientificrep Google Scholar
  11. Fakhraei H (2009) Determination of self assimilating capacity of Kor and Sivand Rivers and total maximum daily load allocation (TMDL) of their pollution sources. Shiraz University, ShirazGoogle Scholar
  12. Fan M, Shibata H (2015) Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecol Indic 50:79–89. doi: 10.1016/j.ecolind.2014.11.003 CrossRefGoogle Scholar
  13. Fernandes MR, Segurado P, Jauch E, Ferreira MT (2016) Riparian responses to extreme climate and land-use change scenarios. Sci Total Environ 569–570:145–158. doi: 10.1016/j.scitotenv.2016.06.099 CrossRefGoogle Scholar
  14. Ficklin DL, Stewart IT, Maurer EP (2013) Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour Res 49:2765–2782. doi: 10.1002/wrcr.20248 CrossRefGoogle Scholar
  15. Hadjikakou M, Whitehead PG, Jin L, Futter M, Hadjinicolaou P, Shahgedanova M (2011) Modelling nitrogen in the Yeilirmak River catchment in Northern Turkey: impacts of future climate and environmental change and implications for nutrient management. Sci Total Environ 409:2404–2418CrossRefGoogle Scholar
  16. Hamon RW (1961) Estimating potential evapotranspiration. J Hydraul Div 87(HY3):107–120Google Scholar
  17. Jin L, Whitehead PG, Futter MN, Lu Z (2012) Modelling the impacts of climate change on flow and nitrate in the River Thames: assessing potential adaptation strategies. Hydrol Res 43:902–916. doi: 10.2166/nh.2011.080 CrossRefGoogle Scholar
  18. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377. doi: 10.1002/(SICI)1097-0088(199604)16:4<361:AID-JOC53>3.0.CO;2-F CrossRefGoogle Scholar
  19. Kim SM, Benham BL, Brannan KM, Zeckoski RW, Doherty J (2007) Comparison of hydrologic calibration of HSPF using automatic and manual methods. Water Resour Res. doi: 10.1029/2006WR004883 Google Scholar
  20. Kim J, Choi J, Choi C, Park S (2013) Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci Total Environ 452–453:181–195. doi: 10.1016/j.scitotenv.2013.02.005 CrossRefGoogle Scholar
  21. Li Z, Huang G, Wang X, Han J, Fan Y (2016) Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada. Sci Total Environ 548–549:198–210. doi: 10.1016/j.scitotenv.2016.01.002 CrossRefGoogle Scholar
  22. Mehdi B, Ludwig R, Lehner B (2015) Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. J Hydrol Reg Stud 4:60–90. doi: 10.1016/j.ejrh.2015.04.009 CrossRefGoogle Scholar
  23. Mitsova D (2014) Coupling land use change modeling with climate projections to estimate seasonal variability in runoff from an urbanizing catchment near Cincinnati, Ohio. ISPRS Int J Geo Inf 3:1256–1277. doi: 10.3390/ijgi3041256 CrossRefGoogle Scholar
  24. Mohsenipour M, Shahid S, Nazemosadat MJ (2013) Effects of El Nino-Southern oscillation on the discharge of Kor River in Iran. Adv Meteorol 2013:1–4. doi: 10.1155/2013/846397 CrossRefGoogle Scholar
  25. Mukundan R, Pradhanang SM, Schneiderman EM, Pierson DC, Anandhi A, Zion MS, Matonse AH, Lounsbury DG, Steenhuis TS (2013) Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology 183:110–119. doi: 10.1016/j.geomorph.2012.06.021 CrossRefGoogle Scholar
  26. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi: 10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  27. Pervez MS, Henebry GM (2015) Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J Hydrol Reg Stud 3:285–311. doi: 10.1016/j.ejrh.2014.09.003 CrossRefGoogle Scholar
  28. Praskievicz S (2016) Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. River Res Appl 32:4–17. doi: 10.1002/rra.2841 CrossRefGoogle Scholar
  29. Praskievicz S, Chang H (2009) A review of hydrological modelling of basin-scale climate change and urban development impacts. Prog Phys Geogr 33:650–671. doi: 10.1177/0309133309348098 CrossRefGoogle Scholar
  30. Praskievicz S, Chang H (2011) Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon. Ann Assoc Am Geogr 101:249–271. doi: 10.1080/00045608.2010.544934 CrossRefGoogle Scholar
  31. Rehana S, Mujumdar PP (2011) River water quality response under hypothetical climate change scenarios in Tunga–Bhadra river, India. Hydrol Process 25:3373–3386. doi: 10.1002/hyp.8057 CrossRefGoogle Scholar
  32. Rodriguez-Lloveras X, Buytaert W, Benito G (2016) Land use can offset climate change induced increases in erosion in Mediterranean watersheds. CATENA 143:244–255. doi: 10.1016/j.catena.2016.04.012 CrossRefGoogle Scholar
  33. Ruiter A (2012) Delta-change approach for CMIP5 GCMs. UtrechtGoogle Scholar
  34. Shrestha B, Babel MS, Maskey S, Van Griensven A, Uhlenbrook S, Green A, Akkharath I (2013) Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR. Hydrol Earth Syst Sci 17:1–20. doi: 10.5194/hess-17-1-2013 CrossRefGoogle Scholar
  35. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  36. Thodsen H, Hasholt B, Kjærsgaard JH (2008) The influence of climate change on suspended sediment transport in Danish rivers. Hydrol Process 22:764–774. doi: 10.1002/hyp.6652 CrossRefGoogle Scholar
  37. Tong STY, Sun Y, Ranatunga T, He J, Yang YJ (2012) Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Appl Geogr 32:477–489. doi: 10.1016/j.apgeog.2011.06.014 CrossRefGoogle Scholar
  38. Tu J (2009) Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J Hydrol 379:268–283. doi: 10.1016/j.jhydrol.2009.10.009 CrossRefGoogle Scholar
  39. Tu J, Xia Z (2008) Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ 407(1):358–378. doi: 10.1016/j.scitotenv.2008.09.031 CrossRefGoogle Scholar
  40. Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J (2009) The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103:389–400. doi: 10.1016/j.geomorph.2008.07.006 CrossRefGoogle Scholar
  41. Whitehead PG, Johnes PJ, Butterfield D (2002) Steady state and dynamic modelling of nitrogen in the River Kennet: impacts of land use change since the 1930s. Sci Total Environ 282–283:417–434. doi: 10.1016/S0048-9697(01)00927-5 CrossRefGoogle Scholar
  42. Whitehead PG, Wilby RL, Butterfield D, Wade AJ (2006) Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Sci Total Environ 365:260–273. doi: 10.1016/j.scitotenv.2006.02.040 CrossRefGoogle Scholar
  43. Whitehead PG, Sarkar S, Jin L, Futter MN, Caesar J, Barbour E, Butterfield D, Sinha R, Nicholls R, Hutton C, Leckie HD (2015) Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ Sci Impacts 17:1082–1097. doi: 10.1039/c4em00616j CrossRefGoogle Scholar
  44. Wilson CO, Weng Q (2011) Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci Total Environ 409:4387–4405. doi: 10.1016/j.scitotenv.2011.07.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Amir Asadi Vaighan
    • 1
    Email author
  • Nasser Talebbeydokhti
    • 1
  • Alireza Massah Bavani
    • 2
  1. 1.Department of Civil and Environmental Engineering, Faculty of EngineeringShiraz UniversityShirazIran
  2. 2.Department of Irrigation and Drainage Engineering, College of AbouraihanUniversity of TehranPakdashtIran

Personalised recommendations