Advertisement

Combining global sensitivity analysis and multiobjective optimisation to estimate soil hydraulic properties and representations of various sole and mixed crops for the agro-hydrological SWAP model

  • Philipp Stahn
  • Stefanie Busch
  • Thomas Salzmann
  • Bettina Eichler-Löbermann
  • Konrad Miegel
Original Article
  • 277 Downloads

Abstract

Sensitivity analysis and multiobjective optimisation are established diagnostic instruments for the identification of uncertainty factors and structural deficits in environmental simulation models. Although the application of both techniques provides a comprehensive understanding of model behaviour, they are seldom practised in combination. In this study, the Sobol global sensitivity method and the multiobjective algorithm AMALGAM are combined to assess the agro-hydrological SWAP model for simulating the soil water balance of different sole and mixed crops based on hydrological and phenological field observations. Fifteen unknown model parameters are subjected to the sensitivity analysis (GSA) with the aim of finding their importance to model performance of matric potential (F 1) and soil water content (F 2). Subsequently, sensitive parameters are calibrated by optimising F 1 and F 2 simultaneously. The GSA showed that the description of the rooting density and potential evapotranspiration is of crucial important to F 1, and that soil properties are most relevant for F 2. Parameter interactions played a primary role in the response of matric potential, being irrelevant for F 2. Structural model deficiencies in reproducing both objectives simultaneously were found in the multiobjective analysis, meaning that deterioration in the fit to one of the objectives is in favour of the other. However, solutions exist that produce satisfying fits to both observational types, suggesting that the SWAP model has the capability of simulating the soil water balance of the crops considered. The results of the evaluation period revealed model deficiencies in simulating the process under an environmental regime significantly different from that of the calibration period, indicating the necessity of acquiring a broader spectrum of environmental regimes for parameter calibration. Overall, this study demonstrates how complex and variable the relationship between parameters and model outputs can be in environmental models and highlights the value of combining global sensitivity analysis and multiobjective optimisation in order to improve model performances.

Keywords

Mixed cropping Soil–vegetation–atmosphere transfer modelling Sensitivity analysis Inverse modelling Multiobjective optimisation 

Notes

Acknowledgements

The authors would like to thank the German Federal Ministry of Food and Agriculture (BMEL) and the Agency for Renewable Resources (FNR) for funding this research under the Project No. FNR-22030111. We gratefully acknowledge the assistance of Dr. Petra Kahle for characterising soil physical properties at the study site.

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO irrigation and drainage paper, vol 56. Food and Agriculture Organization of the United States, RomeGoogle Scholar
  2. Baroni G, Tarantola S (2014) A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: a hydrological case study. Environ Model Softw 51:26–34. doi: 10.1016/j.envsoft.2013.09.022 CrossRefGoogle Scholar
  3. Bastidas LA, Gupta HV, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Sensitivity analysis of a land surface scheme using multicriteria methods. J Geophys Res Atmos 104(D16):19481–19490CrossRefGoogle Scholar
  4. Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35(3):911–935. doi: 10.1007/s13593-014-0277-7 CrossRefGoogle Scholar
  5. Beven K (2006) A manifesto for the equifinality thesis. J Hydrol 320(1–2):18–36. doi: 10.1016/j.jhydrol.2005.07.007 CrossRefGoogle Scholar
  6. Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29. doi: 10.1016/S0022-1694(01)00421-8 CrossRefGoogle Scholar
  7. Bohne K, Horn R, Baumgartl T (1993) Bereitstellung von van-Genuchten-Parametern zur Charakterisierung der hydraulischen Bodeneigenschaften. Pflanzenernährung Bodenkunde 156:229–233CrossRefGoogle Scholar
  8. Brisson N (ed) (2008) Conceptual basis, formalisations and parameterization of the STICS crop model. Collection Update sciences & technologies. Éditions Quæ, VersaillesGoogle Scholar
  9. Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol Process 24(9):1133–1148. doi: 10.1002/hyp.7568 CrossRefGoogle Scholar
  10. de Jong van Lier Q, Wendroth O, van Dam JC (2015) Prediction of winter wheat yield with the SWAP model using pedotransfer functions: an evaluation of sensitivity, parameterization and prediction accuracy. Agric Water Manag 154:29–42. doi: 10.1016/j.agwat.2015.02.011 CrossRefGoogle Scholar
  11. Delta-T Devices Ltd (2016) User manual: Sun Scan Canopy Analysis System type SS1. Delta-T Devices Limited, CambridgeGoogle Scholar
  12. Djaman K, Irmak S (2013) Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng 139(6):433–446. doi: 10.1061/(ASCE)IR.1943-4774.0000559 CrossRefGoogle Scholar
  13. Efron B, Tibshirani RJ (1998) An introduction to the bootstrap, [Nachdr.]. Monographs on statistics and applied probability, vol 57. Chapman & Hall, Boca RatonGoogle Scholar
  14. Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review|Une décennie d’approches de calage multi-objectifs en modélisation hydrologique: Une revue. Hydrol Sci J 55(1):58–78. doi: 10.1080/02626660903526292 CrossRefGoogle Scholar
  15. Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of filed water use and crop yield. Simulation Monographs. Pudoc, WageningenGoogle Scholar
  16. Fustec J, Lesuffleur F, Mahieu S, Cliquet JB (2010) Nitrogen rhizodeposition of legumes. A review. Agron Sustain Dev 30(1):57–66. doi: 10.1051/agro/2009003 CrossRefGoogle Scholar
  17. Gan Y, Duan Q, Gong W, Tong C, Sun Y, Chu W, Ye A, Miao C, Di Z (2014) A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environ Model Softw 51:269–285. doi: 10.1016/j.envsoft.2013.09.031 CrossRefGoogle Scholar
  18. Gao Y, Duan A, Sun J, Li F, Liu Z, Liu H, Liu Z (2009) Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field Crops Res 111(1–2):65–73. doi: 10.1016/j.fcr.2008.10.007 CrossRefGoogle Scholar
  19. Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11(2):773. doi: 10.2307/2402227 CrossRefGoogle Scholar
  20. Ghasemizade M, Baroni G, Abbaspour K, Schirmer M (2017) Combined analysis of time-varying sensitivity and identifiability indices to diagnose the response of a complex environmental model. Environ Model Softw 88:22–34. doi: 10.1016/j.envsoft.2016.10.011 CrossRefGoogle Scholar
  21. Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763CrossRefGoogle Scholar
  22. Guttmann-Bond E (2014) Productive landscapes: a global perspective on sustainable agriculture. Landscapes 15(1):59–76. doi: 10.1179/1466203514Z.00000000024 CrossRefGoogle Scholar
  23. Hansen S, Abrahamsen P, Petersen CT, Styczen M (2012) Daisy: model use, calibration, and validation. Trans ASABE 55(4):1317–1335. doi: 10.13031/2013.42244 CrossRefGoogle Scholar
  24. Hauggaard-Nielsen H, Ambus P, Jensen ES (2003) The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr Cycl Agroecosyst 65(3):289–300. doi: 10.1023/A:1022612528161 CrossRefGoogle Scholar
  25. IMKO (1995) User manual: TRIME-EZ/EC. IMKO Micromodultechnik GmbH, EtlingenGoogle Scholar
  26. JRC (2015) Routines for sensitivity analysis. https://ec.europa.eu/jrc/en/samo/simlab?search. Accessed 10 June 2015
  27. Kroes J, van Dam JC, Groenendijk P, Hendriks RFA, Jacobs CMJ (2008) SWAP version 3.2: theory description and user manual, Update02. Alterra report, 1649(02). Alterra, WageningenGoogle Scholar
  28. Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods. Wiley Series in Probability and Statistics, vol 706. Wiley, HobokenCrossRefGoogle Scholar
  29. Kutschera L, Lichtenegger E, Sobotik M (2009) Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues. Wurzelatlasreihe, vol 7. DLG-Verl., Frankfurt am MainGoogle Scholar
  30. Li L, Sun J, Zhang F, Guo T, Bao X, Smith FA, Smith SE (2006) Root distribution and interactions between intercropped species. Oecologia 147(2):280–290. doi: 10.1007/s00442-005-0256-4 CrossRefGoogle Scholar
  31. Li L, Tilman D, Lambers H, Zhang F-S (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203(1):63–69. doi: 10.1111/nph.12778 CrossRefGoogle Scholar
  32. Madsen H (2000) Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J Hydrol 235(3–4):276–288. doi: 10.1016/S0022-1694(00)00279-1 CrossRefGoogle Scholar
  33. Meier U (2001) Growth stages of mono- and dicotyledonous plants: BBCH Monograph, 2. EditionGoogle Scholar
  34. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi: 10.1029/WR012i003p00513 CrossRefGoogle Scholar
  35. Naseem B, Ajami H, Cordery I, Sharma A (2015) A multi-objective assessment of alternate conceptual ecohydrological models. J Hydrol 529:1221–1234. doi: 10.1016/j.jhydrol.2015.08.060 CrossRefGoogle Scholar
  36. Pappa VA, Rees RM, Walker RL, Baddeley JA, Watson CA (2011) Nitrous oxide emissions and nitrate leaching in an arable rotation resulting from the presence of an intercrop. Agric Ecosyst Environ 141(1–2):153–161. doi: 10.1016/j.agee.2011.02.025 CrossRefGoogle Scholar
  37. Peters A, Durner W, Wessolek G (2011) Consistent parameter constraints for soil hydraulic functions. Adv Water Resour 34(10):1352–1365. doi: 10.1016/j.advwatres.2011.07.006 CrossRefGoogle Scholar
  38. Pfannerstill M, Guse B, Reusser D, Fohrer N (2015) Process verification of a hydrological model using a temporal parameter sensitivity analysis. Hydrol Earth Syst Sci 19(10):4365–4376. doi: 10.5194/hess-19-4365-2015 CrossRefGoogle Scholar
  39. Piccinni G, Ko J, Marek T, Howell T (2009) Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum. Agric Water Manag 96(12):1698–1704. doi: 10.1016/j.agwat.2009.06.024 CrossRefGoogle Scholar
  40. Ren W, Hu L, Zhang J, Sun C, Tang J, Yuan Y, Chen X (2014) Can positive interactions between cultivated species help to sustain modern agriculture? Front Ecol Environ 12(9):507–514. doi: 10.1890/130162 CrossRefGoogle Scholar
  41. Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333. doi: 10.1063/1.1745010 Google Scholar
  42. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers, vol 194. Berichte des Deutschen Wetterdienstes, Offenbach a. MGoogle Scholar
  43. Saltelli A (2008) Global sensitivity analysis: the primer. Wiley, ChichesterGoogle Scholar
  44. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270. doi: 10.1016/j.cpc.2009.09.018 CrossRefGoogle Scholar
  45. Schittenhelm S, Schroetter S (2014) Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids. J Agron Crop Sci 200(1):46–53. doi: 10.1111/jac.12039 CrossRefGoogle Scholar
  46. Sobol IM (1993) Sensitivity analysis for nonlinear mathematical models. Math Model Comput Exp 1:407–414Google Scholar
  47. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280. doi: 10.1016/S0378-4754(00)00270-6 CrossRefGoogle Scholar
  48. Sobol IM, Turchaninov VI, Levitan Yu. L., Shukhman BV (1992) Quasirandom sequence generators. Keldysh Institute of Applied Mathematics Russian Academy of Sciences IMP ZAK. (No. 30)Google Scholar
  49. Taylor SA, Ashcroft GL (1972) Physical edaphology: the physics of irrigated and nonirrigated soils. Freeman, San FranciscoGoogle Scholar
  50. Tyagi NK, Sharma DK, Luthra SK (2000) Evapotranspiration and crop coefficients of wheat and sorghum. J Irrig Drain Eng 126(4):215–222. doi: 10.1061/(ASCE)0733-9437(2000)126:4(215) CrossRefGoogle Scholar
  51. UMS (2012) User Manual: T4/T4e Druckaufnehmer-Tensiometer. UMS GmbH, MunichGoogle Scholar
  52. USDA Soil Texture Calculator (2016) https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167. Accessed 13 Dec 2016
  53. van Bavel CHM, Ahmed J (1976) Dynamic simulation of water depletion in the root zone. Ecol Model 2:189–212CrossRefGoogle Scholar
  54. van Genuchten MT (1980) Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898CrossRefGoogle Scholar
  55. Varella H, Guérif M, Buis S, Beaudoin N (2010) Soil properties estimation by inversion of a crop model and observations on crops improves the prediction of agro-environmental variables. Eur J Agron 33(2):139–147. doi: 10.1016/j.eja.2010.04.005 CrossRefGoogle Scholar
  56. Vereecken H, Huisman JA, Bogena H, Vanderborght J, Vrugt JA, Hopmans JW (2008) On the value of soil moisture measurements in vadose zone hydrology: a review. Water Resour Res. doi: 10.1029/2008WR006829 Google Scholar
  57. Vrugt JA (2016) Multi-criteria optimization using the AMALGAM software package: theory, concepts, and MATLAB implementation. http://faculty.sites.uci.edu/jasper/files/2016/04/manual_AMALGAM.pdf. Accessed 26 Apr 2016
  58. Vrugt JA, Robinson BA (2007) Improved evolutionary optimization from genetically adaptive multimethod search. Proc Natl Acad Sci USA 104(3):708–711. doi: 10.1073/pnas.0610471104 CrossRefGoogle Scholar
  59. Vrugt JA, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003) Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour Res 39(8):SWC51–SWC519Google Scholar
  60. Werisch S, Grundmann J, Al-Dhuhli H, Algharibi E, Lennartz F (2014) Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman. Environ Earth Sci 72(12):4935–4956. doi: 10.1007/s12665-014-3537-6 CrossRefGoogle Scholar
  61. Wöhling T, Vrugt JA (2011) Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data. Water Resour Res. doi: 10.1029/2010WR009265 Google Scholar
  62. Wöhling T, Vrugt JA, Barkle GF (2008) Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties. Soil Sci Soc Am J 72(2):305–319. doi: 10.2136/sssaj2007.0176 CrossRefGoogle Scholar
  63. Wöhling T, Gayler S, Priesack E, Ingwersen J, Wizemann H-D, Högy P, Cuntz M, Attinger S, Wulfmeyer V, Streck T (2013a) Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil-plant models and CLM3.5. Water Resour Res 49(12):8200–8221. doi: 10.1002/2013WR014536 CrossRefGoogle Scholar
  64. Wöhling T, Samaniego L, Kumar R (2013b) Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper Neckar catchment. Environ Earth Sci 69(2):453–468. doi: 10.1007/s12665-013-2306-2 CrossRefGoogle Scholar
  65. Xia H-Y, Zhao J-H, Sun J-H, Bao X-G, Christie P, Zhang F-S, Li L (2013) Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Res 150:52–62. doi: 10.1016/j.fcr.2013.05.02 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Chair of Hydrology and Applied MeteorologyUniversity of RostockRostockGermany
  2. 2.Chair of AgronomyUniversity of RostockRostockGermany

Personalised recommendations