Advertisement

Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia)

  • Mahsa Tashakor
  • Bernhard Hochwimmer
  • Francis Q. Brearley
Original Article

Abstract

The mobility of metals in ultramafic rock–soil systems and metal contamination in serpentine soils were investigated from the Ranau area in Sabah, East Malaysia. Metal concentrations were analysed after division into seven operationally defined fractions by selective sequential extraction (SSE). Geochemical studies showed that the soils are exceptionally high in Cr (<19,000 mg kg−1), Ni (<4800 mg kg−1) and Co (<170 mg kg−1), about 140, 16 and 10 times higher than global soil averages, respectively. Thus, the soil can be categorized as unusually contaminated in comparison with relevant guidelines. Nevertheless, despite expectations, low concentrations of Cr, Ni and Co were found in surface waters flowing over the serpentine massifs (<14, 94 and 7 µg L−1, respectively), indicating mobile ingress into river waters is low or, alternatively, diluted in the tropical environment resulting in minimal decline in their quality ascribed to the regional ultramafic geology of the area. The main reason is revealed by the SSE finding of very low (<1%) mobile metal abundances in available fractions of Ranau soils. While this study is one of the first to use a comprehensive SSE in tropical serpentine soils, the major SSE finding highlights the majority of metals (>95%) residing in refractory residual fractions. Metal speciation studies will shed further light on toxicities in the Malaysian ultramafic tropical environment, reconciled against elemental metal tenure, adopted by common standards.

Keywords

Serpentinite Lateritic soil Surface water Heavy metal Mobility 

Notes

Acknowledgements

This study is a part of the first author’s Ph.D. thesis. The authors wish to thank University Kebangsaan Malaysia (UKM) and particularly staff from School of Science and Technology for technical support. We thank Judi Barrett and anonymous reviewers for their helpful comments.

References

  1. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  2. Alves S, Trancoso MA, Gonçalves MdLS, Correia dos Santos MM (2011) A nickel availability study in serpentinized areas of Portugal. Geoderma 164:155–163. doi: 10.1016/j.geoderma.2011.05.019 CrossRefGoogle Scholar
  3. ANZECC/NHMRC (1992) Australian and New Zealand guidelines for the assessment and management of contaminated sites. https://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh17.pdf. Accessed 9 June 2016
  4. Ashraf MA, Sarfraz M, Naureen R, Gharibreza M (2015) Environmental impacts of metallic elements: speciation, bioavailability and remediation. Springer, SingaporeCrossRefGoogle Scholar
  5. Becquer T, Quantin C, Sicot M, Boudot J (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Tot Environ 301:251–261. doi: 10.1016/S0048-9697(02)00298-X CrossRefGoogle Scholar
  6. Becquer T, Quantin C, Rotte-Capet S, Ghanbaja J, Mustin C, Herbillon AJ (2006) Sources of trace metals in Ferralsols in New Caledonia. Eur J Soil Sci 57:200–213. doi: 10.1111/j.1365-2389.2005.00730.x CrossRefGoogle Scholar
  7. Bonifacio E, Zanini E, Boero V, Franchini-Angela M (1997) Pedogenesis in a soil catena on serpentinite in north-western Italy. Geoderma 75:33–51. doi: 10.1016/S0016-7061(96)00076-6 CrossRefGoogle Scholar
  8. Bourrelier PH, Berthelin J (1998) Contamination des sols par les éléments en traces: les risques et leur gestion, Rapport no. 42. Académie des Sciences, ParisGoogle Scholar
  9. Brearley FQ (2005) Nutrient limitation in a Malaysian ultramafic soil. J Trop For Sci 17:596–609Google Scholar
  10. British Standard Institution (1990) Methods of test for soils for civil engineering purposes BS 1377-Part 2:9.4. Particle size analysis. British Standard Institution, LondonGoogle Scholar
  11. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, PortlandGoogle Scholar
  12. Cancès B, Ponthieu M, Castrec-Rouelle M, Aubry E, Benedetti MF (2003) Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 113:341–355. doi: 10.1016/S0016-7061(02)00369-5 CrossRefGoogle Scholar
  13. Cheng C-H, Jien S-H, Iizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659–668. doi: 10.2136/sssaj2010.0007 CrossRefGoogle Scholar
  14. Dinelli E, Lombini A, Simoni A, Ferrari C (1997) Heavy metals in serpentine soils of selected outcrops of Piacenza and Parma provinces (Northern Apennines, Italy). Miner Petrogr Acta 40:241–255Google Scholar
  15. Dutchlist (2009) Intervention values and target values: soil quality standards. http://www.contaminatedland.co.uk/std-guid/dutch-l.htm. Accessed 7 May 2009
  16. EPA (2009) Drinking water quality standards. http://water.epa.gov/drink/contaminants/index.cfm. Accessed 7 May 2009
  17. Garnier J, Quantin C, Guimarães E, Garg VK, Martins ES, Becquer T (2009) Understanding the genesis of ultramafic soils and catena dynamics in Niquelândia, Brazil. Geoderma 151:204–214. doi: 10.1016/j.geoderma.2009.04.020 CrossRefGoogle Scholar
  18. Ghaderian SM, Baker AJM (2007) Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. J Geochem Explor 92:34–42. doi: 10.1016/j.gexplo.2006.06.002 CrossRefGoogle Scholar
  19. Godard M, Jousselin D, Bodinier J-L (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth Planet Sci Lett 180:133–148. doi: 10.1016/S0012-821X(00)00149-7 CrossRefGoogle Scholar
  20. Graham RC, Diallo MM, Lund LJ (1990) Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California. Soil Sci Soc Am J 54:1682–1690. doi: 10.2136/sssaj1990.03615995005400060030x CrossRefGoogle Scholar
  21. Greater London Council (2001) Guidelines for contaminated soils. http://www.contaminatedland.co.uk/std-guid/kelly-l.htm. Accessed 11 May 2009
  22. Hamon RE, McLaughlin MJ, Gilkes RJ, Rate AW, Zarcinas B, Robertson A, Cozens G, Radford N, Bettenay L (2004) Geochemical indices allow estimation of heavy metal background concentrations in soils. Global Biogeochem Cycles 18:GB1014. doi: 10.1029/2003GB002063 CrossRefGoogle Scholar
  23. Hing TT (1969). Geology and soils of the Ranau-Luhan area, Sabah, East Malaysia. Unpublished Ph.D. thesis, University of MalayaGoogle Scholar
  24. Hseu Z-Y (2006) Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Sci 171:341–353. doi: 10.1097/01.ss.0000209354.68783.f3 CrossRefGoogle Scholar
  25. Hseu Z-Y, Tsai H, Hsi HC, Chen YC (2007) Weathering sequences of clay minerals in soils along a serpentinitic toposequence. Clay Clay Miner 55:389–401. doi: 10.1346/CCMN.2007.0550407 CrossRefGoogle Scholar
  26. Hseu Z-Y, Su Y-C, Zehetner F, His H-C (2016) Leaching potential of geogenic nickel in serpentine soils from Taiwan and Austria. J Environ Manag 186:151–157. doi: 10.1016/j.jenvman.2016.02.034 CrossRefGoogle Scholar
  27. Hutchison CS (2005) Geology of north-west Borneo: Sarawak, Brunei and Sabah. Elsevier, AmsterdamGoogle Scholar
  28. INWQS (2006) Interim national water quality standards of Malaysia. http://www.wepa-db.net/policies/law/malaysia/eq_surface.htm. Accessed 1st April 2010
  29. Kaasalainen M, Yli-Halla M (2003) Use of sequential extraction to assess metal partitioning in soils. Environ Pollut 126:225–233. doi: 10.1016/S0269-7491(03)00191-X CrossRefGoogle Scholar
  30. Kabata-Pendias A (2000) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, New YorkCrossRefGoogle Scholar
  32. Kierczak J, Neel C, Bril H, Puziewicz J (2007) Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 142:165–177. doi: 10.1016/j.geoderma.2007.08.009 CrossRefGoogle Scholar
  33. Kierczak J, Neel C, Aleksander-Kwaterczak U, Helios-Rybicka E, Bril H, Puziewicz J (2008) Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach. Chemosphere 73:776–784. doi: 10.1016/j.chemosphere.2008.06.015 CrossRefGoogle Scholar
  34. Kostić N, Wilson, JM, Živković M, Bain D (1998) Mineralogy and geochemical speciation of heavy metals in some serpentine soils of Serbia. In: 16th World Congress of Soil Science, Montpellier, August 20–26 1998. Elsevier, Amsterdam, pp 444–455Google Scholar
  35. Lee BD, Graham RC, Laurent TE, Amrhein C (2004) Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma 118:303–320. doi: 10.1016/S0016-7061(03)00214-3 CrossRefGoogle Scholar
  36. Lottermoser BG (1997) Natural enrichment of topsoils with chromium and other heavy metals, Port Macquarie, New South Wales, Australia. Aust J Soil Res 35:1165–1176. doi: 10.1071/S96108 CrossRefGoogle Scholar
  37. Mason B, Moore CB (1982) Principles of geochemistry, 4th edn. Wiley, New YorkGoogle Scholar
  38. Massoura ST, Echevarria G, Becquer T, Ghanbaja J, Leclerc-Cessac E, Morel J-L (2006) Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 136:28–37. doi: 10.1016/j.geoderma.2006.01.008 CrossRefGoogle Scholar
  39. McLaughlin MJ, Hamon RE, McLaren RG, Speir TW, Rogers SL (2000) Review: a bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Aust J Soil Res 38:1037–1086. doi: 10.1071/SR99128 CrossRefGoogle Scholar
  40. Migon C, Motegi C, Mari X, Dufour A, Weinbauer M (2011) A preliminary study on metal and nutrient concentrations in running water systems in southern New Caledonia. Bull Environ Contamin Toxicol 87:361–365. doi: 10.1007/s00128-011-0367-z CrossRefGoogle Scholar
  41. Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geol J 2:108–118Google Scholar
  42. Osama AAT (2007) A study on the alternative resources of chromium, cobalt and nickel from ultrabasic soils of Sabah, Malaysia. Dissertation, University Kebangsaan MalaysiaGoogle Scholar
  43. Oze C, Fendorf S, Bird DK, Coleman RG (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46:97–126. doi: 10.2747/0020-6814.46.2.97 CrossRefGoogle Scholar
  44. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124. doi: 10.1078/1433-8319-00045 CrossRefGoogle Scholar
  45. Quantin C, Becquer T, Berthelin J (2002a) Mn-oxide: a major source of easily mobilisable Co and Ni under reducing conditions in New Caledonia Ferralsols. C R Geosci 334:273–278CrossRefGoogle Scholar
  46. Quantin C, Becquer T, Rouiller J, Berthelin J (2002b) Redistribution of metals in a New Caledonia Ferralsol after microbial weathering. Soil Sci Soc Am J 66:1797–1804. doi: 10.2136/sssaj2002.1797 CrossRefGoogle Scholar
  47. Rahim SA, Tan MM, Musta B (1996) Heavy metals composition of some soils developed from basic and ultrabasic rocks in Malaysia. Borneo Sci 2:33–46Google Scholar
  48. Rashmi BN, Prabhakar BC, Gireesh RV, Nijagunaiah R, Ranganath RM (2009) Nickel anomalies in ultramafic profiles of Jayachamarajapura schist belt, Western Dharwar Craton. Curr Sci 96:1512–1517Google Scholar
  49. Repin R (1998) Preliminary survey of serpentine vegetation areas in Sabah. Sabah Parks Nat J 1:19–28Google Scholar
  50. Rinklebe J, Antić-Mladenović S, Frohne T, Stärk H-J, Tomić Z, Ličina V (2016) Nickel in a serpentine-enriched Fluvisol: redox affected dynamics and binding forms. Geoderma 263:203–214. doi: 10.1016/j.geoderma.2015.09.004 CrossRefGoogle Scholar
  51. Schwertmann U, Latham M (1986) Properties of iron oxides in some New Caledonian Oxisols. Geoderma 39:105–123. doi: 10.1016/0016-7061(86)90070-4 CrossRefGoogle Scholar
  52. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142. doi: 10.1016/S0048-9697(98)80104-6 CrossRefGoogle Scholar
  53. Siegel FR (1975) Applied geochemistry. Wiley, New YorkGoogle Scholar
  54. Silveira ML, Alleoni LRF, O’Connor GA, Chang AC (2006) Heavy metal sequential extraction methods—a modification for tropical soils. Chemosphere 64:1929–1938. doi: 10.1016/j.chemosphere.2006.01.018 CrossRefGoogle Scholar
  55. Skordas K, Kelepertsis A (2005) Soil contamination by toxic metals in the cultivated region of Agia, Thessaly, Greece: identification of sources of contamination. Environ Geol 48:615–624. doi: 10.1007/s00254-005-1319-x CrossRefGoogle Scholar
  56. Soil Survey Division Staff (1993) Soil survey manual, U.S. Department of Agriculture Handbook 18. Washington, USAGoogle Scholar
  57. Stueber AM, Goles GG (1967) Abundances of Na, Mn, Cr, Sc and Co in ultramafic rocks. Geochim Cosmochim Acta 31:75–93. doi: 10.1016/0016-7037(67)90099-3 CrossRefGoogle Scholar
  58. Tashakor M, Yaacob WZW, Mohamad H, Ghani AA, Saadati N (2014a) Assessment of selected sequential extraction and the toxicity characteristic leaching test as indices of metal mobility in serpentinite soils. Chem Spec Bioavailab 26:139–147. doi: 10.3184/095422914X14036277112433 CrossRefGoogle Scholar
  59. Tashakor M, Yaacob WZW, Mohamad H, Ghani AA (2014b) Geochemical characteristics of serpentinite soils from Malaysia. Malays J Soil Sci 18:35–49Google Scholar
  60. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851. doi: 10.1021/ac50043a017 CrossRefGoogle Scholar
  61. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2CrossRefGoogle Scholar
  62. van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82. doi: 10.1007/s00049-016-0209-x CrossRefGoogle Scholar
  63. Vardaki C, Kelepertsis A (1999) Environmental impact of heavy metals (Fe, Ni, Cr, Co) in soils waters and plants of Triada in Euboea from ultrabasic rocks and nickeliferous mineralisation. Environ Geochem Health 21:211–226. doi: 10.1023/A:1006648428381 CrossRefGoogle Scholar
  64. WHO (2006) Guidelines for drinking-water quality, 3rd edn. World Health Organization, GenevaGoogle Scholar
  65. Zarcinas B, Ishak CF, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia 1. Peninsular Malaysia. Environ Geochem Health 26:343–357. doi: 10.1007/s10653-005-4669-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mahsa Tashakor
    • 1
  • Bernhard Hochwimmer
    • 2
  • Francis Q. Brearley
    • 3
  1. 1.Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.B. Hochwimmer & Associates Pty LtdAlburyAustralia
  3. 3.School of Science and the EnvironmentManchester Metropolitan UniversityManchesterUK

Personalised recommendations