Advertisement

Shallow groundwater temperature in the Turin area (NW Italy): vertical distribution and anthropogenic effects

  • Arianna BucciEmail author
  • Diego Barbero
  • Manuela Lasagna
  • M. Gabriella Forno
  • Domenico Antonio De Luca
Original Article

Abstract

This study investigated the thermal regime of shallow groundwater in the Turin area (NW Italy), where the large energy demand has motivated a new interest for renewable sources, such as the use of ground-source heat pumps for domestic heating and cooling. The vertical variability of the groundwater temperature between the ground surface and 10–20 m was detected: deeper temperatures were higher than shallow temperatures in spring, while a decrease with depth occurred in autumn. These variations are connected with the heating and cooling cycles of the ground surface due to the seasonal temperature oscillation. Variations below the seasonal oscillation are likely to be connected with the presence of advective heat transport due to the groundwater flow, according to the hydraulic features of a shallow aquifer. Temperature values mostly ranged between 12 and 14 °C in rural areas, while the values were between 14 and 16 °C below the Turin city. This groundwater warming is attributed to a widespread urban heat island phenomenon linked to warmer land surface temperatures in Turin city. Sparse warm outliers are connected with point heat sources and site-specific conditions of land and subsurface use, which may cause the aquifer temperature to rise. A relatively stable temperature below the seasonal fluctuation zone combined with high productivity and legislated limits for deeper groundwater use represent favourable conditions for a large-scale diffusion of groundwater heat pumps within the shallow aquifer. Moreover, this heat surplus should be regarded as a resource for future geothermal installations.

Keywords

Groundwater temperature Thermal logs Seasonal oscillation Anthropogenic heat sources Ground-source heat pumps 

Notes

Acknowledgements

Most of the groundwater monitoring points were accessed thanks to the kind support of Arpa Piemonte and Provincia di Torino. The authors are grateful to all collaborators as well as to all the private institutions and individuals who permitted access to other monitoring wells. The authors deeply thank the reviewer for useful comments and suggestions that helped to improve the paper.

References

  1. Agenzia Regionale per la Protezione Ambientale (2007) Il Piemonte nel cambiamento climatico. Osservazioni passate, impatti presenti e strategie future. ARPA Piemonte, TorinoGoogle Scholar
  2. Allen A, Milenic D, Sikora P (2003) Shallow gravel aquifers and the urban heat island effect: a source of low enthalpy geothermal energy. Geothermics 32:569–578. doi: 10.1016/S0375-6505(03)00063-4 CrossRefGoogle Scholar
  3. Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968. doi: 10.1111/j.1745-6584.2005.00052.x CrossRefGoogle Scholar
  4. Arola T, Korkka-Niemi K (2014) The effect of urban heat islands on geothermal potential: examples from Quaternary aquifers in Finland. Hydrogeol J 22:1953–1967. doi: 10.1007/s10040-014-1174-5 CrossRefGoogle Scholar
  5. Baccino G, Lo Russo S, Taddia G, Verda V (2010) Energy and environmental analysis of an open-loop ground-water heat pump system in an Urban area. Thermal Sci 14(3):693–706CrossRefGoogle Scholar
  6. Baietto A, Cadoppi P, Martinotti G, Perello P, Perrochet P, Vuataza F-D (2008) Assessment of thermal circulations in strike-slip fault systems: the Terme di Valdieri case (Italian western Alps). Geol Soc Lond Spec Publ 299:317–339. doi: 10.1144/SP299.19 CrossRefGoogle Scholar
  7. Banks D (2008) An introduction to thermogeology: ground source heating and cooling. Blackwell, OxfordCrossRefGoogle Scholar
  8. Barbero D, De Luca DA, Forno MG, Lasagna M, Magnea L (2014) A statistical approach to the study of thermal data of shallow aquifer in Piedmont region (NW ITALY). Abstracts book of DAMES 2014: 4th international conference on data analysis and modeling in earth sciences, Milano 6–8th October 2014Google Scholar
  9. Barbero D, De Luca DA, Forno MG, Lasagna M (2016) Preliminary results on temperature distribution in the Quaternary fluvial and outwash deposits of the Piedmont Po Plain (NW Italy): a statistical approach. Rend Online Soc Geol It 41:272–275Google Scholar
  10. Bayer P, Rivera JA, Schweizer D, Schärli U, Blum P (2016) Extracting past atmospheric warming and urban heating effects from borehole temperature profiles. Geothermics 64:289–299. doi: 10.1016/j.geothermics.2016.06.011 CrossRefGoogle Scholar
  11. Benz SA, Bayer P, Menberg K, Jung S, Blum P (2015) Spatial resolution of anthropogenic heat fluxes into urban aquifers. Sci Total Environ 524:427–439CrossRefGoogle Scholar
  12. Beretta GP, Coppola G, Della Pona L (2014) Solute and heat transport in groundwater similarity: model application of a high capacity open-loop heat pump. Geothermics 51:63–70. doi: 10.1016/j.geothermics.2013.10.009 CrossRefGoogle Scholar
  13. Bortolami G, De Luca DA, Filippini G (1988) Caratteristiche geolitologiche e geoidrologiche della pianura torinese. In: Le acque sotterranee della pianura di Torino. Aspetti e problemi. Provincia di. Torino, M/SLit, TorinoGoogle Scholar
  14. Bortolami G, De Luca DA, Masciocco L, Morelli di Popolo e Ticineto A (2002) Le acque sotterranee della Pianura di Torino: carta della base dell’acquifero superficiale. Note illustrative. Provincia di Torino, TorinoGoogle Scholar
  15. Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese. Regione Piemonte, TorinoGoogle Scholar
  16. Burns ER, Ingebritsen SE, Manga M, Williams CF (2016) Evaluating geothermal and hydrogeologic controls on regional groundwater temperature distribution. Water Resour Res 52:1328–1344CrossRefGoogle Scholar
  17. Cortemiglia GC (1999) Serie climatiche ultracentenarie. Regione Piemonte–Università degli Studi di Torino 3:1–91Google Scholar
  18. De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. doi: 10.1007/s10064-013-0527-y Google Scholar
  19. Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Environ Geol 55:539–558. doi: 10.1007/s00254-007-1006-1 CrossRefGoogle Scholar
  20. European Commission (2007) Italy renewable energy fact sheet. https://www.energy.eu/renewables/factsheets/2008_res_sheet_italy_en.pdf. Accessed 20 Sept 2016
  21. European Commission (2015) Italy’s third progress report under directive 2009/28/EC. http://ec.europa.eu/energy/node/70. Accessed 13 April 2016
  22. Ferguson G, Woodbury AD (2004) Subsurface heat flow in an urban environment. J Geophys Res 109:B02402. doi: 10.1029/2003JB002715 CrossRefGoogle Scholar
  23. Festa A, Boano P, Irace A, Lucchesi S, Forno MG, Dela Pierre F, Fioraso G, Piana F (2009) Foglio 156 “Torino Est” della Carta Geologica d’Italia alla scala 1:50.000. APAT, Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici—Dipartimento Difesa del Suolo, RomaGoogle Scholar
  24. Forno MG, Gregorio L, Vatteroni R (2009) La successione stratigrafica del settore destro del Conoide di Lanzo e il suo significato per l’utilizzo del territorio. Mem Soc Geogr It 87(I–II):237–247Google Scholar
  25. Garzena D, Fratianni S, Acquaotta F (2014) Considerazioni sull’isola di calore urbana di Torino attraverso l’analisi dei dati climatici. Geol Amb 1(suppl):90–97Google Scholar
  26. Irace A, Clemente P, Natalicchio M, Ossella L, Trenkwalder S, De Luca DA, Mosca P, Piana F, Polino R, Violanti D (2009) Geologia e idrostratigrafia profonda della Pianura Padana occidentale. La Nuova Lito, FirenzeGoogle Scholar
  27. Lasagna M, De Luca DA, Franchino E (2016a) Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75:240. doi: 10.1007/s12665-015-5039-6 CrossRefGoogle Scholar
  28. Lasagna M, De Luca DA, Franchino E (2016b) The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environ Earth Sci 75:961. doi: 10.1007/s12665-016-5768-1 CrossRefGoogle Scholar
  29. Lo Russo S, Taddia G, Cerino Abdin E (2015) Potential of shallow aquifers in the plain sector of Piemonte region (NW Italy) for groundwater heat pumps diffusion. Rend Online Soc Geol It 35:180–183Google Scholar
  30. Menberg K, Bayer P, Zosseder K, Rumohr S, Blum P (2013) Subsurface urban heat islands in German cities. Sci Total Environ 442:123–133. doi: 10.1016/j.scitotenv.2012.10.0437 CrossRefGoogle Scholar
  31. Oke TR (1995) The heat island characteristics of urban boundary layer: characteristics, causes and effects. Wind climate in cities. Springer, Netherlands, pp 81–107Google Scholar
  32. Pasquale V, Verdoya M, Chiozzi P (2011) Groundwater flow analysis using different geothermal constraints: the case study of Acqui Terme area, northwestern Italy. J Volc Geotherm Res 199:38–46. doi: 10.1016/j.jvolgeores.2010.10.003 CrossRefGoogle Scholar
  33. Perello P, Marini L, Martinotti G, Hunziker JC (2001) The thermal circuits of the Argentera Massif (western Alps, Italy). An example of low-enthalpy geothermal resources controlled by Neogene alpine tectonics. Eclogae Geol Helv 94:75–94Google Scholar
  34. Rybach L, Eugster WJ (2010) Sustainability aspects of geothermal heat pump operation, with experience from Switzerland. Geothermics 39:365–369. doi: 10.1016/j.geothermics.2010.08.002 CrossRefGoogle Scholar
  35. Sparacino M, Camussi M, Colombo M, Carella R, Sommaruga C (2007) The world’s largest geothermal district heating using ground water under construction in Milan (Italy)-AEM unified heat pump project. In: Proceeding of European geothermal congress, Unterhaching, Germany, vol 30Google Scholar
  36. Silliman SE, Booth DF (1993) Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J Hydrol 146:131–148CrossRefGoogle Scholar
  37. Stauffer F, Bayer P, Blum P, Molina-Giraldo N, Kilzenbach W (2013) Thermal use of shallow subsurface. CRC Press, Boca RatonCrossRefGoogle Scholar
  38. Stringari M, Balsotti R, De Luca DA (2010) Le caratteristiche termiche dell’acquifero superficiale della Regione Piemonte. Acque Sotter 121:29–42Google Scholar
  39. Taniguchi M (1993) Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles. Water Resour Res 29(7):2021–2026CrossRefGoogle Scholar
  40. Taniguchi MJ, Shimada T, Tanaka I, Kayane Y, Sakura Y, Shimano S, Dapaah-Siakwan S, Kawashima S (1999) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35(5):1507–1517CrossRefGoogle Scholar
  41. Taniguchi M, Uemura T, Jago-on K (2007) Combined effects of urbanization and global warming on subsurface temperature in four Asian cities. Vadose Zone J 6:591–596. doi: 10.2136/vzj2006.0094 CrossRefGoogle Scholar
  42. Taylor CA, Stefan HG (2009) Shallow groundwater temperature response to climate change and urbanization. J Hydrol 375:601–612. doi: 10.1016/j.jhydrol.2009.07.009 CrossRefGoogle Scholar
  43. Voogt J (2004) Urban heat islands: hotter cities. http://www.actionbioscience.org/environment/voogt.html. Last accessed 19 Jan 2017
  44. Zhu K, Blum P, Ferguson G, Balke KD, Bayer P (2010) The geothermal potential of urban heat islands. Environ Res Lett 5:044002. doi: 10.1088/1748-9326/5/4/044002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of TurinTurinItaly

Personalised recommendations