Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region

  • Zhongqiong ZhangEmail author
  • Qingbai Wu
  • Siru Gao
  • Yandong Hou
Original Article


The changes in hydrothermal dynamics under different underlying conditions are the important aspect of hydrological and ecological processes, and engineering stability in permafrost regions. This study monitored the temperature and moisture of soil at a depth range from 0 to 80 cm beneath the barren, alpine steppe, and alpine meadow at the Beiluhe Basin on the Qinghai–Tibet Plateau. The freezing and thawing process and hydrothermal dynamic changes were analyzed within the test range. In a year, the freezing and thawing process controlled the pattern of hydrothermal changes. The properties of ground surface affected the hydrothermal change process in various stages. In the freeze stages, moisture and the absolute value of ground temperature showed an exponential relationship. In the thawing stages, moisture may increase, decrease, or remain stable in different temperature ranges. This process is affected by precipitation, solar radiation, and so on. At a 0–30 cm depth range, moisture increased linearly with precipitation. At 0–20 cm depth range, precipitation had a significant effect on the ground temperature changes. With the same rainfall condition, the decline of ground temperature corresponds with solar radiation flux. Results confirmed that ground properties were important factors that control the soil moisture and temperature change in the permafrost region.


Temperature Moisture Dynamic changes Precipitation 



We would like to express our sincerest gratitude to the anonymous reviewers for providing us with constructive and insightful comments and suggestions. We also like to thank the Natural Science Foundation of China (41301071 and 41330634), the Foundation for Excellent Youth Scholars of CAREERI, and the Independent Research Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-19).


  1. Chang J, WangGX LiCJ, Mao TX (2015) Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau. Sci China Ser D 58(5):727–738. doi: 10.1007/s11430-014-5009-y CrossRefGoogle Scholar
  2. Chen H, Zhu QA, Wu N, Wang YF, Peng CH (2011) Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc Natl Acad Sci USA (PNAS) 108(19):E93. doi: 10.1073/pnas.1100091108 CrossRefGoogle Scholar
  3. Cheng GD, Wu TH(2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res112:F02S03. doi:  10.1029/2006JF000631
  4. Cheng GD, Jin HJ (2013) Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol J 21:5–23. doi: 10.1007/s10040-012-0927-2 CrossRefGoogle Scholar
  5. Gao QZ, Guo YQ, Xue HM, Hasbagen G, Li Y, Wan YF (2016) Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci Total Environ 554–555:34–41. doi: 10.1016/j.scitotenv.2016.02.131 CrossRefGoogle Scholar
  6. Gao ZQ (2005) Determination of soil heat flux in a Tibetan short-grass prairie. Bound-Lay Meteorol 114:165–178. doi: 10.1007/s10546-004-8661-5 CrossRefGoogle Scholar
  7. Lachenbruch AH (1994) Permafrost, the active layer and changing climate.Open-File report 94-694, Washington DCGoogle Scholar
  8. Liang SH, Wan L, Li ZM, Cao WB (2007) The effect of permafrost on alpine vegetation in the source regions of the Yellow River. J Glaciol Geocryol 29(1):45–52 (in Chinese with English abstract) Google Scholar
  9. Li R, Zhao L, Ding YJ, Wu TH, Du EJ, Liu GY (2013) Study on soil thermodynamic characteristic at different underling surface in northern Qinghai-Tibet Plateau. Acta Energiac Solaris Sin 34(6):1076–1084 (in Chinese with English abstract) Google Scholar
  10. Li R, Zhao L, Ding YJ, Jiao KQ, Wang YX, Qiao YP (2010) A study on soil thermodynamic characteristics of active layer in northern Tibetan Plateau. Chin J Geophy 53(5):1060–1072 (in Chinese with English abstract) CrossRefGoogle Scholar
  11. Liu YZ, Wu QB, Zhang JM, Sheng Y (2002) Deformation of highway roadbed in permafrost regions of the Tibetan Plateau. J Glaciol 24(1):10–14 (in Chinese with English abstract) Google Scholar
  12. Luo DL, Jin HJ, Marchenko S, Romanovsky V (2014) Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci China Ser D 57:1834–1845. doi: 10.1007/s11430-014-4852-1 CrossRefGoogle Scholar
  13. Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett 34(8):162–179. doi: 10.1029/2007GL029525 CrossRefGoogle Scholar
  14. Niu L, Ye BS, Li J, Sheng Y (2011) Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China. Sci China Ser D 54(4):615–624. doi: 10.1007/s11430-010-4073-1 CrossRefGoogle Scholar
  15. Peters-Lidard CD, Blackburn E, Liang X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55(7):1209–1224. doi: 10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2 CrossRefGoogle Scholar
  16. Qian ZY, Hu ZY, Du P, Zhang YW (2005) Energy transfer of near surface layer and micrometeorology characteristics in Beiluhe Area of Qinghai-Xizang Plateau. Plateau Meteorol 24(1):43–48 (in Chinese with English abstract) Google Scholar
  17. Wang GX, Liu GS, Li CJ, Yan Y (2012) The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agric For Meteorol 162:44–57. doi: 10.1016/j.agrformet.2012.04.006 Google Scholar
  18. Wang SJ, Huo M, Zou WJ (2004) Subgrade failure of Qinghai-Tibet Highway in permafrost area. Highway 5:22–26 (in Chinese with English abstract) Google Scholar
  19. Xu XZ, Wang JC, Zhang LX (2010) Permafrost physics. Science Press, Beijing, pp 153–167Google Scholar
  20. Yi SH, McGuire AD, Harden J (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J Geophys Res Biogeosci 114(G2):92–103. doi: 10.1029/2008JG000841 CrossRefGoogle Scholar
  21. Yi SH, Zhou ZY (2011) Increasing contamination might have delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA (PNAS) 108(19):E94. doi: 10.1073/pnas.1100394108 CrossRefGoogle Scholar
  22. Yu QH, Liu YZ, Tong CJ (2002) Analysis of the subgrade deformation of the Qinghai-Tibetan Highway. J glaciol geocryol 24(5):623–627 (in Chinese with English abstract) Google Scholar
  23. Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci USA (PNAS) 110(11):4309–4314. doi: 10.1073/pnas.1210423110 CrossRefGoogle Scholar
  24. Zhang S, Teng JD, He ZY (2016) Canopy effect caused by vapor transfer in covered freezing soils. Géotechnique. doi: 10.1680/jgeot.16.P.016 Google Scholar
  25. Zhang YS, Ohata T, Kang ES (2003a) Observation and estimation of evaporation from the ground surface of the cryosphere in eastern Asia. Hydrol Process 17:1135–1147. doi: 10.1002/hyp.1183 CrossRefGoogle Scholar
  26. Zhang YS, Ohata T, Kadota T (2003b) Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. J Hydrol 283:41–56. doi: 10.1016/S0022-1694(03)00240-3 CrossRefGoogle Scholar
  27. Zhang ZQ (2012) Study on the mechanism of asphalt pavement’s thermal effects in permafrost regions. Thesis of graduate school of Chinese Academy of Sciences, Lanzhou, ChinaGoogle Scholar
  28. Zhao L, Wu QB, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr Periglac 21:198–207. doi: 10.1002/ppp.688 CrossRefGoogle Scholar
  29. Zhuang Q, Melillo J, Kicklighter D, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycles 18(3):1279–1290. doi: 10.1029/2004GB002239 CrossRefGoogle Scholar
  30. Zhou YW, Guo DX, Qiu GQ, Cheng GD (2000) Geocryology in China. Science Press, Beijing, pp 435–478Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhongqiong Zhang
    • 1
    • 2
    Email author
  • Qingbai Wu
    • 1
    • 2
  • Siru Gao
    • 1
  • Yandong Hou
    • 1
  1. 1.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and ResourcesChinese Academy of ScienceLanzhouChina
  2. 2.Beiluhe Observation Station of Frozen Soil Environment and Engineering, Northwest institute of Eco-Environment and ResourcesChinese Academy of ScienceGolmudChina

Personalised recommendations