Structure analysis of geopolymers synthesized from clay originated from Serbia

  • Snežana S. Nenadović
  • Ljiljana M. Kljajević
  • Maja A. Nešić
  • Marijana Ž. Petković
  • Katarina V. Trivunac
  • Vladimir B. Pavlović
Original Article

Abstract

The paper presents chemical and structural analysis of geopolymer materials which are obtained by alkali-activated calcined clay (metakaolin) originated from Serbia under strictly defined conditions. Characterization of the metakaolin and geopolymers molecular structure has been done using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The paper presents the possibility of obtaining geopolymer structure and differences in chemical and structural characterization of these materials taking into account the concentration of NaOH as a variable parameter. The results of MALDI analysis of metakaolin and synthesized geopolymer structures using various matrix system: 2,4,6 trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic, 2,6 dihydroxyacetophenone and laser desorption/ionization, have shown that THAP matrix is the most appropriate for analysing these aluminosilicate materials.

Keywords

Geopolymers Porous materials MALDI-TOF FTIR 

References

  1. Barbosa V, MacKenzie KJ, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and sílica: sodium polysialate polymers. Int J Inorg Polym 2:309–317. doi:10.1016/S1466-6049(00)00041-6 CrossRefGoogle Scholar
  2. Bich Ch, Ambroise J, Péra J (2009) Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci 44:194–200CrossRefGoogle Scholar
  3. Brinker CJ, Scherer GW (1990) Sol–gel science. Academic Press, New YorkGoogle Scholar
  4. Cristóbal AGS, Castelló R, Luengo MAM, Vizcayno C (2009) Acid activation of mechanically and thermally modified kaolins. Mater Res Bull 44(11):2103–2111CrossRefGoogle Scholar
  5. Cristóbal AGS, Castelló R, Luengo MAM, Vizcayno C (2010) Zeolites prepared from calcined and mechanically modified kaolins a comparative study. Appl Clay Sci 49:239–246CrossRefGoogle Scholar
  6. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–73CrossRefGoogle Scholar
  7. Davidovits J (1991) Geopolymers, inorganic polymeric new materials. J Therm Anal 37:1633–1656CrossRefGoogle Scholar
  8. Duxson P, Lukey GC, Jannie SJ, De Venter V, Mallicoat SW, Kriven WM (2005) Microstructural characterisation of metakaolin-based geopolymers. Ceram Trans 165:71–85Google Scholar
  9. Duxson P, Fernandez-Jimenez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42:2917–2933CrossRefGoogle Scholar
  10. Epping JD, Chmelka BF (2006) Nucleation and growth of zeolites and inorganic mesoporous solids: molecular insights from magnetic resonance spectroscopy. Curr Opin Colloid Interface Sci 11:81–117CrossRefGoogle Scholar
  11. Ferone C, Colangelo F, Cioffi R, Montagnaro F, Santoro L (2013) Use of reservoir clay sediments as raw materials for geopolymer binders. Adv Appl Ceram 112:184–189CrossRefGoogle Scholar
  12. Ferone C, Liguori B, Capasso I, Colangelo F, Cioffi R, Cappelletto E, Di Maggio R (2015) Thermally treated clay sediments as geopolymersource material. Appl Clay Sci 107:195–204CrossRefGoogle Scholar
  13. Flower DJM, Sanjayan JG (2007) Green house gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288CrossRefGoogle Scholar
  14. Galamboš M, Suchanek P, Roskpoffova O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633CrossRefGoogle Scholar
  15. Habert G, d’Espinose de Lacaillerie JB, Roussel N (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J Cleaner Prod 19:1229–1238CrossRefGoogle Scholar
  16. Hillenkamp F, Karas M, Beavis RC, Chait BT (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63:1193A–1203ACrossRefGoogle Scholar
  17. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319CrossRefGoogle Scholar
  18. Kamseu E, Lancellotti I, Sglavo VM, Modolo L, Leonelli C (2016) Design of inorganic polymer mortar from ferricalsialic and calsialic slags for indoor humidity control. Materials 9(6):410CrossRefGoogle Scholar
  19. Komnitsas K (2011) Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng 21:1023–1032CrossRefGoogle Scholar
  20. Komnitsas K, Zaharaki D (2007) Geopolymerisation: a review and prospects for the minerals industry. Miner Eng 20:1261–1277CrossRefGoogle Scholar
  21. Konan KL, Peyratout C, Smith A, Bonnet J-P, Rossignol S, Oyetola S (2009) Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions. J Colloid Interface Sci 339:103–109CrossRefGoogle Scholar
  22. Lecomte I, Liégeois M, Rulmont A, Cloots R, Maseri F (2003) Synthesis and characterization of new inorganic polymeric composites based on kaolin or white clay and on ground-granulated blast furnace slag. J Mater Res 18:2571CrossRefGoogle Scholar
  23. Nazari A, Sanjayan JG (2015) Synthesis of geopolymer from industrial wastes. J Clean Prod 99:297–304CrossRefGoogle Scholar
  24. Nenadovic S, Nenadovic M, Kovacevic R, Lj Matovic, Matovic B, Jovanovic Z, Grbovic-Novakovic J (2009) Influence of diatomite microstructure on its adsorption capacity for Pb(II). Sci Sinter 41(3):309–317CrossRefGoogle Scholar
  25. Nenadovic SS, Kljajevic LM, Nenadovic MT, Mirkovic MM, Markovic SB, Rakocevic ZL (2015) Mechanochemical treatment and structural properties of lead adsorption on kaolinite (Rudovci, Serbia). Environ Earth Sci 73:7669–7677CrossRefGoogle Scholar
  26. Ogundiran SK, Kumar S (2015) Synthesis and characterisation of geopolymer from Nigerian clay. Appl Clay Sci 108:173–181CrossRefGoogle Scholar
  27. Provis JL, Duxon P, van Deventer JSJ (2010) The role of particle technology in developing sustainable construction materials. Adv Powder Technol 21:2–7CrossRefGoogle Scholar
  28. Rahier H, Simons W, Van Melle B, Biesemans M (1997) Low temperature synthesized aluminosilicate glasses Part ΙΙΙ. Influence of composition of the silica solution on production, structure and properties. J Mater Sci 32:2237–2247CrossRefGoogle Scholar
  29. Rees CA, Provis JL, Lukey GC, Van Deventer JSJ (2007) Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23:8179Google Scholar
  30. Ruscher CH, Schulz A, Gougazeh MH, Ritzmann A (2014) Mechanical strength development of geopolymer binder and the effect of quartz content. In: Kriven WM, Wang J, Zhou Y, Gyekenyesi AL (eds) Developments in strategic materials and computational design IV. The American Ceramic Society/Wiley, New York, pp 13–23Google Scholar
  31. Schüth F (2001) Nucleation and crystallization of solids from solution. Curr Opin Solid State Mater Sci 5:389–395CrossRefGoogle Scholar
  32. Simonsen ME, Sonderby C, Li Zheshen, Sogaard EG (2009) XPS and FT-IR investigation of silicate polymers. J Mater Sci 44:2079–2088CrossRefGoogle Scholar
  33. Stevenson M, Sagoe-Crentsil K (2005) Relationship between composition, structure and strength of inorganic polymers: part 1—metakaolinderived inorganic polymers. J Mater Sci 40:2023–2036CrossRefGoogle Scholar
  34. Stubican V, Roy R (1961) Infrared spectar of layer structure silicate. J Am Ceram Soc 44:625–627CrossRefGoogle Scholar
  35. Varga G, Trnik A (2006) Struktura kaolinitu a metakaolinitu Silikatnik. 3:11–19Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Snežana S. Nenadović
    • 1
  • Ljiljana M. Kljajević
    • 1
  • Maja A. Nešić
    • 2
  • Marijana Ž. Petković
    • 2
  • Katarina V. Trivunac
    • 3
  • Vladimir B. Pavlović
    • 4
  1. 1.Laboratory for Materials Sciences, Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia
  2. 2.Department of Physical Chemistry, Institute of Nuclear Sciences “Vinča”University of BelgradeBelgradeSerbia
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  4. 4.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsUniversity of BelgradeBelgradeSerbia

Personalised recommendations