Advertisement

Basic parameterization of Schleswig–Holstein’s shallow geological formations for numerical reactive transport simulations: representative groundwater compositions

  • Frank DethlefsenEmail author
  • Michael Nolde
  • Dirk Schäfer
  • Andreas Dahmke
Thematic Issue
Part of the following topical collections:
  1. Subsurface Energy Storage

Abstract

Groundwater protection has to remain ensured in spite of the ambition to apply more and various types of subsurface usages in future. In this context, numerical simulations using “Virtual Aquifers” can be suitable for evaluating the general effects of complex induced process interactions, while meaningful simulation results require the appropriate parameterization of scenario analyses, such as regarding representative groundwater compositions. Therefore, this study reviewed the hydrochemical groundwater compositions of the different aquifers in the German state Schleswig–Holstein. To evaluate what aquifers exhibit statistically different compositions, the nonparametric Kruskal–Wallis test, the analysis of variance, the discriminant analysis, and the hierarchical cluster analysis were applied. These showed that between the free aquifers at pH < 6, the free aquifers at pH > 6, and the group of confined aquifers, significant differences in the dissolved constituents exist, but also that among the confined aquifers these differences are not significant, except for saline groundwaters that can be present near underground salt structures and the North Sea. Furthermore, the two methods applied for deducting representative compositions were the nearest neighbor method, where the monitoring wells accessing the groundwater most similar to the median compositions in the respective aquifers were identified, and the cluster center analysis. The calculated representative groundwater compositions for four aquifer groups (“Acidic” shallow aquifers, “Neutral” shallow aquifers, confined freshwater aquifers, saline aquifers) using both methods were very similar. Thus, this study provides a methodology and a basis for parameterizing Virtual Aquifer studies and discusses the limits of representativeness based on the regional data set.

Keywords

Parameterization Virtual Aquifers ANOVA Discriminant analysis Cluster analysis ANGUS+ 

Notes

Acknowledgements

The authors would gratefully like to acknowledge the funding provided by the German Ministry of Education and Research (BMBF) for the ANGUS+ Project, Grant Number 03EK3022, and the support of the Project Management Jülich (PTJ). We especially thank the State Agency for Agriculture, Environment and Rural Areas Schleswig–Holstein, in particular Sabine Rosenbaum, Dr. Broder Nommensen, and Wolfgang Scheer for contributing the LLUR data and reports. Louisa Lagmöller helped by generating and improving the displayed figures and Dr. Christof Beyer contributed helpful comments during the development of the manuscript.

References

  1. Ashley RP, Lloyd JW (1978) Example of the use of factor-analysis and cluster-analysis in groundwater chemistry interpretation. J Hydrol 39:355–364CrossRefGoogle Scholar
  2. Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420CrossRefGoogle Scholar
  3. Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313CrossRefGoogle Scholar
  4. Cruz JV, Franca Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151:382–398CrossRefGoogle Scholar
  5. Dethlefsen F, Peter A, Hornbruch G, Lamert H, Garbe-Schönberg D, Beyer M, Dietrich P, Dahmke A (2014) Hydrogeochemical alteration of groundwater due to a CO2 injection test into a shallow aquifer in Northeast Germany. European Geosciences Union General Assembly, ViennaGoogle Scholar
  6. Dethlefsen F, Beyer C, Feeser V, Köber R (2016) Parameterizability of processes in subsurface energy and mass storage. Accessed at http://angusplus.de/en/publications/journal-articles
  7. Evans DJ (2008) An appraisal of underground gas storage technologies and incidents for the development of risk assessment methodology. British Geological Survey, NottinghamGoogle Scholar
  8. Fahrner S, Schäfer D, Dethlefsen F, Dahmke A (2012) Reactive modelling of CO2 intrusion into freshwater aquifers: current requirements, approaches and limitations to account for temperature and pressure effects. Environ Earth Sci 67:2269–2283CrossRefGoogle Scholar
  9. Haase C, Dahmke A, Ebert M, Schäfer D, Dethlefsen F (2014) Suitability of existing numerical model codes and thermodynamic databases for the prognosis of calcite dissolution processes in near-surface sediments due to a CO2 leakage investigated by column experiments. Aquat Geochem 20:639–661CrossRefGoogle Scholar
  10. Haase C, Ebert M, Dethlefsen F (2016) Uncertainties of geochemical codes and thermodynamic databases for predicting the impact of carbon dioxide on geologic formations. Appl Geochem 67:81–92CrossRefGoogle Scholar
  11. Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925CrossRefGoogle Scholar
  12. Hekmat MA (1982) Sedimentologie, Petrographie und Geochenie des Miozäns aus den Bohrungen Osdorf - westlich von Hamburg, Neu-Börnsen und Kassenburg im süd-östlichen Schleswig–Holstein. Dissertation, Universität HamburgGoogle Scholar
  13. IBM (2014) IBM SPSS Statistics Base 22, Version 22Google Scholar
  14. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621CrossRefGoogle Scholar
  15. Kunkel R, Hannappel S, Voigt H-J, Wendland F (2002) Die natürliche Grundwasserbeschaffenheit ausgewählter hydrostratigraphischer Einheiten in Deutschland. Forschungszentrum Jülich GmbHGoogle Scholar
  16. Kunkel R, Voigt H-J, Wendland F, Hannappel S (2004) Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland. Forschungszentrum Jülich, HYDOR Consult GmbH Berlin, Brandenburgisch-Technische Universität Cottbus, CottbusGoogle Scholar
  17. Lei XY, Peng YB, Wright FT (1995) Testing homogeneity of normal means with a simply ordered alternative and dependent observations. Comput Stat Data Anal 20:173–183CrossRefGoogle Scholar
  18. Levene H (1960) Robust tests for equality of variances. In: Olkon I (ed) Contributions to probability and statistics. Stanford University Press, Palo Alto, pp 278–292Google Scholar
  19. Lilliefors HW (1967) On Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 62:399–402CrossRefGoogle Scholar
  20. Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig–Holstein area (North German Basin). Tectonophysics 470:183–194CrossRefGoogle Scholar
  21. Manhenke V, Reutter E, Hübschmann M, Limberg A, Lückstädt M, Nommensen B, Peters A, Schlimm W, Taugs R, Voigt H-J (2001) Hydrostratigraphische Gliederung des nord- und mitteldeutschen känozoischen Lochergesteinsgebietes. Z Angew Geol 47:146–152Google Scholar
  22. McIntosh JC, Grasby SE, Hamilton SM, Osborn SG (2014) Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Appl Geochem 50:37–50CrossRefGoogle Scholar
  23. Nguyen TT, Kawamura A, Tong TN, Amaguchi H, Nakagawa N, Gilbuena R, Bui DD (2015) Identification of spatio-seasonal hydrogeochemical characteristics of the unconfined groundwater in the Red River Delta, Vietnam. Appl Geochem 63:10–21CrossRefGoogle Scholar
  24. Ohse W (1983) Lösungs- und Fällungserscheinungen im System oberflächennahes unterirdisches Wasser/gesteinsbildende Minerale. Eine Untersuchung auf der Grundlage der chemischen Gleichgewichtsthermodynamik. Dissertation, Christian-Albrechts-Universität zu KielGoogle Scholar
  25. Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber B, Dietrich P, Werban U, Vogt C, Richnow H-H, Großmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci 67:335–349CrossRefGoogle Scholar
  26. Poncet A, Courvoisier DS, Combescure C, Perneger TV (2016) Normality and sample size do not matter for the selection of an appropriate statistical test for two-group comparisons. Methodol Eur J Res Methods Behav Soc Sci 12:61–71Google Scholar
  27. Popp S, Beyer C, Koproch N, Köber R, Dahmke A, Bauer S (2015) Untersuchung der Auswirkung unterirdischer Wärmespeicherung auf eine TCE-Grundwasserkontamination durch numerische Szenariensimulationen. bbr 03/2015:54–61Google Scholar
  28. Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36:2437–2442CrossRefGoogle Scholar
  29. Schäfer D, Schlenz B, Dahmke A (2004) Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach. Biodegradation 15:453–465CrossRefGoogle Scholar
  30. Schlömer S, Elbracht J, Blumenberg M, Illing CJ (2016) Distribution and origin of dissolved methane, ethane and propane in shallow groundwater of Lower Saxony, Germany. Appl Geochem 67:118–132CrossRefGoogle Scholar
  31. Schulz H-D (1977) Über den Grundwasserhaushalt im norddeutschen Flachland. Landesamt für Wasserhaushalt und Küsten Schleswig–Holsteins KielGoogle Scholar
  32. Selim SZ, Ismail MA (1984) K-Means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans Pattern Anal 6:81–87CrossRefGoogle Scholar
  33. Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, Lagneau V, Lichtner PC, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Simunek J, Spycher N, Yabusaki SB, Yeh GT (2015) Reactive transport codes for subsurface environmental simulation. Comput Geosci 19:445–478CrossRefGoogle Scholar
  34. Sterner M, Stadler I (2014) Energiespeicher: Bedarf, Technologien, Integration. Springer, New YorkGoogle Scholar
  35. Wachter T, Dethlefsen F, Gödeke S, Dahmke A (2004) Räumlich-statistische Charakterisierung der Hydrogeochemie einer BTEX-Grundwasserkontamination am Standort RETZINA/Zeitz. Grundwasser 9:21–32CrossRefGoogle Scholar
  36. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  37. Wendland F, Blum A, Coetsiers M, Gorova R, Griffioen J, Grima J, Hinsby K, Kunkel R, Marandi A, Melo T, Panagopoulos A, Pauwels H, Ruisi M, Traversa P, Vermooten JSA, Walraevens K (2008) European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ Geol 55:77–85CrossRefGoogle Scholar
  38. Wüstenhagen K, Baermann A, Bruns J, Busse R, Geyh M, Schneider W, Wienberg R (1990) Glazial geprägter Glimmerton als Schadstoffbarriere im Elbtal des Hamburger Raumes. Geologisches Jahrbuch C 55. E. Schweizerbart´sche Verlagsbuchhandlung, HannoverGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of GeosciencesChristian-Albrechts-University KielKielGermany
  2. 2.Institute of GeographyChristian-Albrechts-University KielKielGermany

Personalised recommendations