The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory

  • Ute Wollschläger
  • Sabine Attinger
  • Dietrich Borchardt
  • Mario Brauns
  • Matthias Cuntz
  • Peter Dietrich
  • Jan H. Fleckenstein
  • Kurt Friese
  • Jan Friesen
  • Alexander Harpke
  • Anke Hildebrandt
  • Greta Jäckel
  • Norbert Kamjunke
  • Kay Knöller
  • Simon Kögler
  • Olaf Kolditz
  • Ronald Krieg
  • Rohini Kumar
  • Angela Lausch
  • Matthias Liess
  • Andreas Marx
  • Ralf Merz
  • Christin Mueller
  • Andreas Musolff
  • Helge Norf
  • Sascha E. Oswald
  • Corinna Rebmann
  • Frido Reinstorf
  • Michael Rode
  • Karsten Rink
  • Karsten Rinke
  • Luis Samaniego
  • Michael Vieweg
  • Hans-Jörg Vogel
  • Markus Weitere
  • Ulrike Werban
  • Matthias Zink
  • Steffen Zacharias
Thematic Issue
Part of the following topical collections:
  1. Water in Germany

Abstract

This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.

Keywords

Monitoring Catchment Water quality Observatory Water fluxes 

References

  1. Altermann M, Rinklebe J, Merbach I, Körschens M, Langer U, Hofmann B (2005) Chernozem—soil of the year 2005. J Plant Nutr Soil Sci 168:725–740CrossRefGoogle Scholar
  2. Anis MR, Rode M (2015a) A new magnitude category disaggregation approach for temporal high-resolution rainfall intensities. Hydrol Process 29:1119–1128CrossRefGoogle Scholar
  3. Anis MR, Rode M (2015b) Effect of climate change on runoff components using high resolution rainfall-runoff modelling. Hydrol Process. doi:10.1002/hyp10381 Google Scholar
  4. Baldocchi DD, Valentini R, Running S, Oechel W, Dahlman R (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Glob Change Biol 2(3):159–168CrossRefGoogle Scholar
  5. Basu NB, Thompson SE, Rao PSC (2011) Hydrologic and biogeochemical functioning of intensively managed catchments: a synthesis of top-down analyses. Water Resour Res 47:W00J15. doi:10.1029/2011WR010800 Google Scholar
  6. Becker A, McDonnell JJ (1998) Topographical and ecological controls of runoff generation and lateral flows in mountain catchments. In: Hydrology, water resources and ecology in headwaters (proceedings of the HeadWater’98 conference held at Meran/Merano, Italy, April 1998). IAHS Publ. no. 248Google Scholar
  7. Bernhofer C, Goldberg V, Franke J, Surke M, Adam M (2008) Regionale Klimadiagnose Sachsen-Anhalt. Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt, Sonderheft 5/2008, 66 pp (in German) Google Scholar
  8. Bogena H, Schulz K, Vereecken H (2006) Towards a network of observatories in terrestrial environmental research. Adv Geosci 9:109–114CrossRefGoogle Scholar
  9. Bogena HR, Herbst M, Huisman JA, Rosenbaum U, Weuthen A, Vereecken H (2010) Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J 9:1002–1013. doi:10.2136/vzj2009.0173 CrossRefGoogle Scholar
  10. Bogena H, Kunkel R, Pütz T, Vereecken H, Krüger E, Zacharias S, Dietrich P, Wollschläger U, Kunstmann H, Papen H, Schmid H, Munch J, Priesack E, Schwank M, Bens O, Brauer A, Borg E, Hajnsek I (2012) TERENO—Ein langfristiges Beobachtungsnetzwerk für die terrestrische Umweltforschung. Hydrol Wasserbewirtsch 56:138–143Google Scholar
  11. Borchardt D (1982) Geoökologische Erkundung und hydrologische Analyse von Kleineinzugsgebieten des unteren Mittelgebirgsbereichs, dargestellt am Beispiel von Experimentalgebieten der oberen Selke/Harz. Petermanns Geogr Mitt 126(4):251–262 (in German) Google Scholar
  12. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2003) Hydrologischer Atlas von DeutschlandGoogle Scholar
  13. Burt T (2003) Monitoring change in hydrological systems. Sci Total Environ 310:9–16CrossRefGoogle Scholar
  14. Chrisman B, Zreda M (2013) Quantifying mesoscale soil moisture with the cosmic-ray rover. Hydrol Earth Syst Sci 17:5097–5108CrossRefGoogle Scholar
  15. Crockford RH, Richardson DP (2000) Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol Process 14:2903–2920CrossRefGoogle Scholar
  16. Dierke C, Werban U (2013) Relationships between gamma-ray data and soil properties at an agricultural test site. Geoderma 199:90–98. doi:10.1016/j.geoderma.2012.10.017 CrossRefGoogle Scholar
  17. FFG Elbe (2015) Strategische Umweltprüfung zur Aktualisierung des Maßnahmenprogramms nach § 82 WHG (in German) Google Scholar
  18. Friese K, Schultze M, Boehrer B, Koschorreck M, Buettner O, Herzsprung P, Kuehn B, Roenicke H, Tittel J, Wendt-Potthoff K, Wollschläger U, Dietze M, Rinke K (2014) Ecological response of two hydro-morphological similar pre-dams to contrasting land-use in the Rappbode reservoir system (Germany). Int Rev Hydrobiol 99(5):335–349. doi:10.1002/iroh.201301672 CrossRefGoogle Scholar
  19. Frühauf M, Schwab M (2008) 5.6.2 Landschaftscharakter und Oberflächengestalt. In: Bachmann GH et al (eds) Geologie von Sachsen-Anhalt (in German) Google Scholar
  20. Gerrits AMJ, Savenije HHG, Hoffmann L, Pfister L (2007) New technique to measure forest floor interception—an application in a beech forest in Luxembourg. Hydrol Earth Syst Sci 11:695–701CrossRefGoogle Scholar
  21. Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, Darmstadt, 272 pp (in German) Google Scholar
  22. Graeff Th, Zehe E, Reusser D, Lück E, Schröder B, Wenk G, John H, Bronstert A (2009) Process identification through rejection of model structures in a mid-mountainous rural catchment: observations of rainfall-runoff response, geophysical conditions and model inter-comparison. Hydrol Process 23:702–718. doi:10.1002/hyp.7171 CrossRefGoogle Scholar
  23. Grathwohl P, Rügner H, Wöhling Th, Osenbrück K, Schwientek M, Gayler S, Wollschläger U, Selle B, Pause M, Delfs J-O, Grzeschik M, Weller U, Ivanov M, Cirpka OA, Maier U, Kuch B, Nowak W, Wulfmeyer V, Warrach-Sagi K, Streck Th, Attinger S, Bilke L, Dietrich P, Fleckenstein JH, Kalbacher Th, Kolditz O, Rink K, Samaniego L, Vogel H-J, Werban U, Teutsch G (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turnover. Environ Earth Sci. doi:10.1007/s12665-013-2281-7 Google Scholar
  24. Halbedel S, Büttner O, Weitere M (2013) Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism. Biogeosciences 10:5555–5569. doi:10.5194/bg-10-5555-2013 CrossRefGoogle Scholar
  25. Hannes M, Wollschläger U, Schrader F, Durner W, Gebler S, Pütz T, Fank J, von Unold G, Vogel H-J (2015) A comprehensive filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters. Hydrol Earth Syst Sci 19:3405–3418. doi:10.5194/hess-19-3405-2015 CrossRefGoogle Scholar
  26. Hannes M, Wollschläger U, Wöhling T, Vogel H-J (2016) Revisiting hydraulic hysteresis based on long-term monitoring of hydraulic states in lysimeters. Water Resour Res 52:3847–3865. doi:10.1002/2015WR018319 CrossRefGoogle Scholar
  27. Hesse C, Krysanova V, Voß A (2012) Implementing in-stream processes in large-scale landscape modeling for the impact assessment on water quality. Model Assess, Environ. doi:10.1007/s10666-012-9320-8 Google Scholar
  28. Hesser FB, Franko U, Rode M (2010) Spatially distributed lateral nitrate transport at the catchment scale. J Environ Qual 39:193–203CrossRefGoogle Scholar
  29. Horowitz AJ (2013) A review of selected inorganic surface water quality-monitoring practices: are we really measuring what we think, and if so, are we doing it right? Environ Sci Technol 47(6):2471–2486CrossRefGoogle Scholar
  30. Ippolito A, Kattwinkel M, Rasmussen JJ, Schäfer RB, Fornaroli R, Liess M (2015) Modeling global distribution of agricultural insecticides in surface waters. Environ Pollut 198:54–60CrossRefGoogle Scholar
  31. Jagdhuber T, Hajnsek I, Bronstert A, Papathanassiou KP (2013) Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition. IEEE Trans Geosci Remote Sens 51(4):2201–2215. doi:10.1109/TGRS.2012.2209433 CrossRefGoogle Scholar
  32. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. Verified 26 Mar 2012
  33. Jensen KH, Illangasekare TH (2011) HOBE: a hydrological observatory. Vadose Zone J 10:1–7. doi:10.2136/vzj2011.0006 CrossRefGoogle Scholar
  34. Jiang S (2014) Hydrological water quality modelling of nested meso-scale catchments. Dissertation, TU Braunschweig, 140 ppGoogle Scholar
  35. Jiang S, Jomaa S, Rode M (2014) Modelling inorganic nitrogen leaching in nested mesoscale catchments in central Germany. Ecohydrology. doi:10.1002/eco.1462 Google Scholar
  36. Jiang S, Jomaa S, Büttner O, Meon G, Rode M (2015) Multi-site identification of a distributed hydrological nitrogen model using Bayesian uncertainty analysis. J Hydrol 529:940–950CrossRefGoogle Scholar
  37. Jomaa S, Jiang S, Thraen D, Rode M (2016) Modelling the effect of different agricultural practices on stream nitrogen load in central Germany. Energy Sustain Soc 6:1. doi:10.1186/s13705-016-0077-9 CrossRefGoogle Scholar
  38. Kamjunke N, Büttner O, Jäger C, Marcus H, von Tümpling W, Halbedel S, Norf H, Brauns M, Borchardt D, Weitere M (2013) Biogeochemical patterns in a river network along a land use gradient. Environ Monit Assess. doi:10.1007/s10661-013-3247-7 Google Scholar
  39. Kamjunke N, Mages M, Büttner O, Marcus H, Weitere M (2015a) Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach. Environ Monit Assess 187:432CrossRefGoogle Scholar
  40. Kamjunke N, Herzsprung P, Neu TR (2015b) Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Sci Total Environ 506–507:353–360CrossRefGoogle Scholar
  41. Kattwinkel M, Kühne JV, Foit K, Liess M (2011) Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl 21(6):2068–2081CrossRefGoogle Scholar
  42. Kirchner JW, Neal C (2013) Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc Natl Acad Sci USA 110(30):12213–12218CrossRefGoogle Scholar
  43. Kirchner JW, Feng X, Neal C, Robson AJ (2004) The fine structure of water-quality dynamics: the (high-frequency) wave of the future. Hydrol Process 18:1353–1359. doi:10.1002/hyp.5537 CrossRefGoogle Scholar
  44. Kistner I, Ollesch G, Meissner R, Rode M (2013) Spatial-temporal dynamics of available phosphorus concentration in topsoil of arable land in a small low mountain catchment—experimental results and modelling. Agric Ecosyst Environ 176:24–38CrossRefGoogle Scholar
  45. Köhli M, Schrön M, Zreda M, Schmidt U, Dietrich P, Zacharias S (2015) Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour Res 51(7):5772–5790. doi:10.1002/2015WR017169 CrossRefGoogle Scholar
  46. Krause S, Freer J, Hannah DM, Howden NJK, Wagener Th, Worall F (2013) Catchment similarity concepts for understanding dynamic biogeochemical behavior of river basins. Process, Hydrol. doi:10.1002/hyp.10093 Google Scholar
  47. Kropp J, Roithmeier O, Hattermann F, Rachimow C, Lüttger A, Wechsung F, Lasch P, Christiansen ES, Reyer C, Suckow F, Gutsch M, Holsten A, Kartschall T, Wodinski M, Hauf Y, Conradt T, Österle H, Walther C, Lissmer T, Lux N, Tekken V, Ritchie S, Kossak J, Klaus M, Costa L, Vetter T, Klose M (2010) Saxony-Anhalt climate change study: climate change in Saxony-Anhalt—Vulnerabilites to consequences of climate change (Klimawandel in Sachsen-Anhalt—Verletzlichkeiten gegenüber den Folgen des Klimawandels). PIK, Potsdam-Institute for Climate Impact Research, Potsdam (in German) Google Scholar
  48. Kumar R, Samaniego L, Attinger S (2013) Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations. Water Resour Res. doi:10.1029/2012WR012195 Google Scholar
  49. Kunkel R, Sorg J, Eckardt R, Kolditz O, Rink K, Vereecken H (2013) TEODOOR: a distributed geodata infrastructure for terrestrial observation data. Environ Earth Sci 69:507–521. doi:10.1007/s12665-013-2370-7 CrossRefGoogle Scholar
  50. Langheinrich U, Böhme D, Wegener U, Lüderitz V (2002) Streams in the Harz national parks (Germany)—a hydrochemical and hydrobiological evaluation. Limnologica 32:309–321CrossRefGoogle Scholar
  51. Lausch A, Pause M, Merbach I, Zacharias S, Doktor D, Volk M, Seppelt R (2013a) A new multi-scale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field and landscape. Environ Monit Assess 185(2):1215–1235CrossRefGoogle Scholar
  52. Lausch A, Zacharias S, Dierke C, Pause M, Kühn I, Doktor D, Dietrich P, Werban U (2013b) Analysis of vegetation and soil pattern using hyperspectral remote sensing, EMI and Gamma ray measurements. Vadose Zone J. doi:10.2136/vzj2012.0217 Google Scholar
  53. Liedtke H (1995) Nördliches und östliches Harzvorland. In: Liedtke H, Marcinek L (eds) 5.7. Physische Geographie Deutschlands. Justus Perthes Verlag, Gotha (in German) Google Scholar
  54. Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18(9):1948–1955CrossRefGoogle Scholar
  55. Lin H (2010) Earth’s critical zone and hydropedology: concepts, characteristics, and advances. Hydrol Earth Syst Sci 14:25–45CrossRefGoogle Scholar
  56. Lin H, Bouma J, Pachepsky Y, Western A, Thompson J, van Genuchten R, Vogel H-J, Lilly A (2006) Hydropedology: synergistic integration of pedology and hydrology. Water Resour Res 42:W05301. doi:10.1029/2005WR004085 CrossRefGoogle Scholar
  57. Lindenschmidt K-E, Ollesch G, Rode M (2004) Implementing more physically-based hydrological modelling to improve the simulation of non-point dissolved phosphorus transport in small and medium-sized river basins. Hydrol Sci J 49(3):495–510CrossRefGoogle Scholar
  58. Martini E, Wollschläger U, Kögler S, Behrens T, Dietrich P, Reinstorf F, Schmidt K, Weiler M, Werban U, Zacharias S (2015) Spatial and temporal dynamics of hillslope-scale soil moisture patterns: characteristic states and transition mechanisms. Vadose Zone J. doi:10.2136/vzj2014.10.0150 Google Scholar
  59. Martini E, Werban U, Zacharias S, Pohle M, Dietrich P, Wollschläger U (2016) Repeated electromagnetic induction measurements for mapping soil moisture at the field scale: validation with data from a wireless soil moisture monitoring network. Hydrol Earth Syst Sci Discuss. doi:10.5194/hess-2016-93 Google Scholar
  60. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013) A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric For Meteorol 169:122–135CrossRefGoogle Scholar
  61. Meybeck M, Moatar F (2012) Daily variability of river concentrations and fluxes: indicators based on the segmentation of the rating curve. Hydrol Process 26(8):1188–1207CrossRefGoogle Scholar
  62. Montgomery JL, Harmon T, Kaiser W, Sanderson A, Haas CN, Hooper R, Minsker B, Schnoor J, Clesceri NL, Graham W, Brezonik P (2007) The WATERS network: an integrated environmental observatory network for water research. Environ Sci Technol 41:6642–6647CrossRefGoogle Scholar
  63. Mueller C, Krieg R, Merz R, Knoeller K (2015) Regional nitrogen dynamics in the TERENO Bode River catchment, Germany, as constrained by stable isotope patterns. Isotopes Environ Health Stud. doi:10.1080/10256016.2015.1019489 Google Scholar
  64. Mueller Ch, Zink M, Samaniego L, Krieg R, Merz R, Rode M, Knoeller K (2016) Discharge driven nitrogen dynamics in a mesoscale river basin as constrained by stable isotope patterns. Environ Sci Technol. doi:10.1021/acs.est.6b01057 Google Scholar
  65. Munz M, Oswald SE, Schmidt C (2016) Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures. J Hydrol 539:74–87. doi:10.1016/j.jhydrol.2016.05.012 CrossRefGoogle Scholar
  66. Munze R, Orlinskiy P, Gunold R, Paschke A, Kaske O, Beketov MA, Hundt M, Bauer C, Schüürmann G, Moder M, Liess M (2015) Pesticide impact on aquatic invertebrates identified with Chemcatcher (R) passive samplers and the SPEAR (pesticides) index. Sci Total Environ 537:69–80CrossRefGoogle Scholar
  67. Musolff A, Schmidt C, Selle B, Fleckenstein JH (2015) Catchment controls on solute export. Adv Water Resour 86:133–146. doi:10.1016/j.advwatres.2015.09.026 CrossRefGoogle Scholar
  68. Musolff A, Schmidt C, Rode M, Lischeid G, Weise SM, Fleckenstein JH (2016) Groundwater heads control nitrate export from an agricultural lowland catchment. Adv Water Resour. doi:10.1016/j.advwatres.2016.07.003 Google Scholar
  69. Ogée J, Brunet Y, Loustau D, Berbigier P, Delzon S (2003) MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Glob Change Biol 9:697–717CrossRefGoogle Scholar
  70. Ollesch G, Sukhanovski Y, Kistner I, Rode M, Meissner R (2005) Characterisation and modelling of the spatial heterogeneity of snowmelt erosion. Earth Surf Proc Land 30:197–211CrossRefGoogle Scholar
  71. Ollesch G, John H, Meissner R, Reinstorf F (2010) Anthropogenic alteration of water balance and runoff processes in a small low mountain catchment. In: Status and perspectives of hydrology in small basins, vol 336. IAHS PublGoogle Scholar
  72. Paola C, Foufoula-Georgiou E, Dietrich WE, Hondzo M, Mohrig D, Parker G, Power ME, Rodriguez-Iturbe I, Voller V, Wilcock P (2006) Toward a unified science of the Earth’s surface: opportunities for synthesis among hydrology, geomorphology, geochemistry, and ecology. Water Resour Res 42:W03S10. doi:10.1029/2005WR004336 CrossRefGoogle Scholar
  73. Parr T, Sier A, Battarbee R, Mackay A, Burgess J (2003) Detecting environmental change: science and society—perspectives on long-term research and monitoring in the 21st century. Sci Total Environ 310:1–8CrossRefGoogle Scholar
  74. Pause M, Lausch A, Bernhardt M, Hacker J, Schulz K (2014) Improving soil moisture retrieval from airborne L-band radiometer data by considering spatially varying roughness. Can J Remote Sens. doi:10.1080/07038992.2014.907522 Google Scholar
  75. Paz-Kagan T, Zaady E, Salbach C, Schmidt A, Lausch A, Zacharias S, Notesco G, Ben Dor E, Karnieli A (2015) Developing a Spectral Soil Quality Index (SSQI) map using imaging spectroscopy. Remote Sens 7(11):15748–15781. doi:10.3390/rs71115748 CrossRefGoogle Scholar
  76. Pütz Th, Kiese R, Zacharias S, Bogena H, Priesack E, Wollschläger U, Schwank M, Papen H, von Unold G, Vereecken H (2011) TERENO-SOILCan—Ein Lysimeter Netzwerk in Deutschland. In: Proceedings 14. Gumpensteiner Lysimetertagung 2011, 5–10 (in German) Google Scholar
  77. Pütz Th, Kiese R, Wollschläger U, Groh J, Rupp H, Zacharias S, Priesack E, Gerke HH, Gasche R, Bens O, Borg E, Baessler C, Kaiser K, Herbrich M, Munch J-C, Sommer M, Vogel H-J, Vanderborght J, Vereecken H (2016) TERENO-SOILCan—A lysimeter network in Germany observing soil processes and plant diversity influenced by climate change. Environ Earth Sci (this issue)Google Scholar
  78. Qu W, Bogena H, Huisman JA, Vereeecken H (2013) Calibration of a novel low-cost soil water content sensor based on a ring oscillator. Vadose Zone J. doi:10.2136/vzj2012.0139 Google Scholar
  79. Reed PM, Brooks RP, Davis KJ, DeWalle DR, Dressler KA, Duffy CJ, Lin H, Miller DA, Najjar RG, Salvage KM, Wagener Th, Yarnal B (2006) Bridging river basin scales and processes to assess human-climate impacts and the terrestrial hydrologic system. Water Resour Res 42:W07418. doi:10.1029/2005WR004153 CrossRefGoogle Scholar
  80. Reinstorf F, Tiedge J, Bauspieß J, John H, Ollesch G (2010) Time series modelling in the Schaefertal catchment in the Lower Harz Mountains/Central Germany. In: Status and perspectives of hydrology in small basins, vol 336. IAHS PublGoogle Scholar
  81. Reuter H, Krause G, Monig A, Wulkow M, Horn H (2003) RIONET: a water quality management tool for river basins. Water Sci Technol 48:47–53Google Scholar
  82. Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Berichte des Deutschen Wetterdienstes 194 (in German) Google Scholar
  83. Richter S, Völker J, Borchardt D, Mohaupt V (2013) The Water Framework Directive as an approach for Integrated Water Resources Management: results from the experiences in Germany on implementation, and future perspectives. Environ Earth Sci 69:719–728. doi:10.1007/s12665-013-2399-7 CrossRefGoogle Scholar
  84. Rink K, Bilke L, Kolditz O (2014) Visualization Strategies for Environmental Modelling Data. Environ Earth Sci 72(10):3857–3868. doi:10.1007/s12665-013-2970-2 CrossRefGoogle Scholar
  85. Rinke K, Kuehn B, Bocianov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Rinke K, Dietze M, Matthes M, Paul L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536. doi:10.1007/s12665-013-2464-2 CrossRefGoogle Scholar
  86. Rode M, Suhr U (2007) Uncertainties in selected river water quality data. Hydrol Earth Syst Sci 11(2):863–874CrossRefGoogle Scholar
  87. Rode M, Arhonditsis G, Balin D, Kebede T, Krysanova V, van Griensven A, van der Zee S (2010) New challenges in integrated water quality modelling. Hydrol Process 24:3447–3461CrossRefGoogle Scholar
  88. Rode M, Halbedel S, Anis MR, Weitere M (2016) Continuous in-stream assimilatory nitrate uptake from high frequency sensor measurements. Environ Sci Technol 50(11):5685–5694. doi:10.1021/acs.est.6b00943 CrossRefGoogle Scholar
  89. Samaniego L, Kumar R, Attinger S (2010) Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resour Res 46(5):W05523. doi:10.1029/2008WR007327 CrossRefGoogle Scholar
  90. Schmidt R (1995) Böden. In: Liedke H, Marcinek J (eds) Physische Geographie Deutschlands. Justus Perthes Verlag, Gotha, p 559Google Scholar
  91. Schmidt C, Musolff A, Trauth N, Vieweg M, Fleckenstein JH (2012) Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrol Earth Syst Sci 16:3689–3697. doi:10.1594/hess-16-3689-2012 CrossRefGoogle Scholar
  92. Schröter I, Paasche H, Dietrich P, Wollschläger U (2015) Estimation of catchment-scale soil moisture patterns based on terrain data and sparse TDR measurements. Vadose Zone J. doi:10.2136/vzj2015.01.0008 Google Scholar
  93. Schuberth K (2008) 2 Geomorphologischer Überblick. In: Bachmann GH et al (eds) Geologie von Sachsen-Anhalt, 689 pp (in German) Google Scholar
  94. Schulz K, Seppelt R, Zehe E, Vogel H-J, Attinger S (2006) Importance of spatial structures in advancing hydrological sciences. Water Resour Res 42:W03S03. doi:10.1029/2005WR004301 CrossRefGoogle Scholar
  95. Seibert J, Grabs T, Kohler S, Laudon H, Winterdahl M, Bishop K (2009) Linking soil- and stream-water chemistry based on a Riparian flow-concentration integration model. Hydrol Earth Syst Sci 13:2287–2297. doi:10.5194/hess-13-2287-2009 CrossRefGoogle Scholar
  96. Shrestha RR, Bárdossy A, Rode M (2007) Modelling Nitrate dynamics at a catchment scale: a combined deterministic and fuzzy rule based model. J Hydrol 342:143–156CrossRefGoogle Scholar
  97. Shrestha RR, Osenbrueck K, Rode M (2013) Assessment of catchment response and calibration of a hydrological model using high-frequency discharge-nitrate concentration data. Hydrol Res. doi:10.2166/nh.2013.087 Google Scholar
  98. Staelens J, De Schrijver A, Verheyen K, Verhoest NEC (2008) Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol Process 22(1):33–45CrossRefGoogle Scholar
  99. Stöcker G (1994) Moore und Fließgewässer am Brocken.- In Landesamt für Umweltschutz Sachsen-Anhalt (ed) Der Nationalpark Hochharz. Naturschutz im Land Sachsen-Anhalt 31:42–44Google Scholar
  100. Trauth N, Schmidt C, Maier U, Vieweg M, Fleckenstein JH (2013) Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour Res 49(9):5834–5850CrossRefGoogle Scholar
  101. Trauth N, Schmidt C, Vieweg M, Maier U, Fleckenstein JH (2014) Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J Geophys Res 119(5):910–928CrossRefGoogle Scholar
  102. Trauth N, Schmidt C, Vieweg M, Oswald SE, Fleckenstein JH (2015) Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water Resour Res. doi:10.1002/2014WR015857 Google Scholar
  103. van der Velde Y, de Rooij GH, Rozemeijer JC, van Geer FC, Broers HP (2010) Nitrate response of a lowland catchment: on the relation between stream concentration and travel time distribution dynamics. Water Resour Res 46:W11534Google Scholar
  104. Van Stan JT, Lewis ES, Hildebrandt A, Rebmann C, Friesen J (2015) online first): interacting bark structure and rainfall conditions impact stemflow variability in a temperate beech-oak forest. Hydrol Sci J. doi:10.1080/02626667.2015.1083104 Google Scholar
  105. Vieweg M, Trauth N, Fleckenstein JH, Schmidt C (2013) Robust optode-based method for measuring in situ oxygen profiles in gravelly streambeds. Environ Sci Technol 47:9858–9865. doi:10.1021/es401040w CrossRefGoogle Scholar
  106. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Reidy Liermann C, Davies PM (2010) Global threads to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440 CrossRefGoogle Scholar
  107. Wenk G (2004). Die hydrologischen Untersuchungsgebiete Schäfertal und Waldbach im Unterharz. Unpublished report, University of Applied Sciences Magdeburg-Stendal (in German) Google Scholar
  108. Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz Th, Frenzel M, Schwank M, Baessler C, Butterbach-Bahl K, Bens O, Borg E, Brauer A, Dietrich P, Hajnsek I, Helle G, Kiese R, Kunstmann H, Klotz S, Munch JC, Papen H, Priesack E, Schmid HP, Steinbrecher R, Rosenbaum U, Teutsch G, Vereecken H (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10:955–973. doi:10.2136/vzj2010.0139 CrossRefGoogle Scholar
  109. Zebisch M, Grothmann T, Schröter D, Hasse C, Fritsch U, Cramer W (2005) Climate change in Germany. Vulnerability and Adaptation of Climate Sensitive Sectors. Environmental Research of the Federal Ministry of the Environment, Nature Conservation and Nuclear Safety. Research Report 201 41 253, UBA-FB 000844/e, Dessau, GermanyGoogle Scholar
  110. Zreda M, Shuttleworth WJ, Zeng X, Zweck C, Desilets D, Franz T, Rosolem R, Ferre TPA (2012) The cosmic-ray soil moisture observing system. Hydrol Earth Syst Sci 16:4079–4099. doi:10.5194/hess-16-4079-2012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ute Wollschläger
    • 1
    • 2
    • 3
  • Sabine Attinger
    • 1
    • 3
  • Dietrich Borchardt
    • 3
    • 4
  • Mario Brauns
    • 4
  • Matthias Cuntz
    • 1
    • 8
  • Peter Dietrich
    • 1
    • 3
  • Jan H. Fleckenstein
    • 1
    • 3
  • Kurt Friese
    • 4
  • Jan Friesen
    • 1
  • Alexander Harpke
    • 2
  • Anke Hildebrandt
    • 5
  • Greta Jäckel
    • 1
  • Norbert Kamjunke
    • 4
  • Kay Knöller
    • 2
  • Simon Kögler
    • 1
    • 3
  • Olaf Kolditz
    • 1
    • 3
  • Ronald Krieg
    • 2
  • Rohini Kumar
    • 1
  • Angela Lausch
    • 1
  • Matthias Liess
    • 1
  • Andreas Marx
    • 1
  • Ralf Merz
    • 2
  • Christin Mueller
    • 2
  • Andreas Musolff
    • 1
  • Helge Norf
    • 4
  • Sascha E. Oswald
    • 6
  • Corinna Rebmann
    • 1
  • Frido Reinstorf
    • 7
  • Michael Rode
    • 4
  • Karsten Rink
    • 1
  • Karsten Rinke
    • 4
  • Luis Samaniego
    • 1
    • 3
  • Michael Vieweg
    • 1
    • 3
  • Hans-Jörg Vogel
    • 2
    • 3
  • Markus Weitere
    • 4
  • Ulrike Werban
    • 1
    • 3
  • Matthias Zink
    • 1
    • 3
  • Steffen Zacharias
    • 1
  1. 1.UFZ-Helmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.UFZ-Helmholtz Centre for Environmental ResearchHalleGermany
  3. 3.Water and Earth System Science Competence Cluster (WESS)TübingenGermany
  4. 4.UFZ-Helmholtz Centre for Environmental ResearchMagdeburgGermany
  5. 5.Chair of Hydrogeology, Institute for GeosciencesFriedrich-Schiller-University JenaJenaGermany
  6. 6.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany
  7. 7.University of Applied Sciences Magdeburg-StendalMagdeburgGermany
  8. 8.UMR 1137, Ecologie et Ecophysiologie Forestières, Centre de NancyINRAChampenouxFrance

Personalised recommendations