Environmental Earth Sciences

, 75:1488 | Cite as

First geophysical and shallow ice core investigation of the Kazbek plateau glacier, Caucasus Mountains

  • Stanislav S. Kutuzov
  • Vladimir N. Mikhalenko
  • Alexi M. Grachev
  • Patrick Ginot
  • Ivan I. Lavrentiev
  • Anna V. Kozachek
  • Victoria V. Krupskaya
  • Alexey A. Ekaykin
  • Levan G. Tielidze
  • Pavel A. Toropov
Original Article


First-ever ice core drilling at Mt. Kazbek (Caucasus Mountains) took place in the summer of 2014. A shallow ice core (18 m) was extracted from a plateau at ~4500 m a.s.l. in the vicinity of the Mt. Kazbek summit (5033 m a.s.l.). A detailed radar survey showed that the maximum ice thickness at this location is ~250 m. Borehole temperature of −7 °C was measured at 10 m depth. The ice core was analyzed for oxygen and deuterium isotopes and dust concentration. From the observed seasonal cycle, it was determined that the ice core covers the time interval of 2009–2014, with a mean annual snow accumulation rate of 1800 mm w. eq. Multiple melt layers have been detected. δ18O values vary from −25 to −5‰. The dust content was determined using a particle sizing and counting analyzer. The dust layers were investigated using scanning electron microscopy and X-ray diffraction analysis. Dust can be separated into two categories by its origin: local and distant. Samples reflecting predominantly local origin consisted mainly of magmatic rocks, while clay minerals were a characteristic of dust carried over large distances, from the deserts of the Middle East and Sahara. The calculated average dust flux over three years at Kazbek was of 1.3 mg/cm2 a−1. Neither δ18O nor dust records appear to have been affected by summer melting. Overall, the conditions on Kazbek plateau and the available data suggest that the area offers good prospects of future deep drilling in order to obtain a unique environmental record.


Mountain glaciers Ice cores The Caucasus Mt. Kazbek GPR Oxygen isotopes Dust content 



The authors are grateful to Prof. Maria Shahgedanova (University of Reading, UK) for providing critical comments on the early version of the manuscript. Critical suggestions by the two anonymous Reviewers allowed substantially improving the manuscript. We are grateful to Jason Cervenec (Byrd Polar and Climate Research Center) for English improvement when preparing the revised version. This study was supported by the Russian Foundation for Basic Research (Grant No. 14-05-00137). SEM and XRD equipment that was employed this work became available at the Department of Engineering and Ecological Geology of the Moscow State University through the Development Program of the Moscow State University.


  1. Aizen VB, Aizen EM, Joswiak DR, Fujita K, Takeuchi N, Nikitin SA (2006) Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records (Altai, Tien Shan and Tibet). Ann Glaciol 43:49–60CrossRefGoogle Scholar
  2. Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940Google Scholar
  3. Chernyshev IV, Lebedev VA, Bubnov SN, Arakelyants MM, Goltsman YuV (2002) Isotopic geochronology of Quaternary volcanic eruptions in the Greater Caucasus. Geochem Int 40:1–16Google Scholar
  4. Davis ME, Thompson LG, Yao T, Wang N (2005) Forcing of the Asian monsoon on the Tibetan Plateau: evidence from high resolution ice core and tropical coral records. J Geophys Res 110:D04101. doi: 10.1029/2004JD004933 CrossRefGoogle Scholar
  5. Davitaya FF (1969) Atmospheric dust content as a factor affecting glaciation and climatic change. Ann Assoc Amer Geogr 59(3):552–560CrossRefGoogle Scholar
  6. Doscher A, Gaggeler HW, Schotterer U, Schwikowski M (1995) A 130 years deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Water Air Soil Pollut 85:603–609CrossRefGoogle Scholar
  7. Dritz VA, Kossovskaya AG (1990) Glinistie minerali: smektiti, smeshanosloinie obrazovaniyz. Nauka, Moscow, p 214Google Scholar
  8. Eichler A, Schwikowski M, Gäggeler HW, Furrer V, Synal H-A, Beer J, Saurer M, Funk M (2000) Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). J Glaciol 46:507–515CrossRefGoogle Scholar
  9. Eichler A, Schwikowski M, Gäggeler HW (2001) Meltwater induced relocation of chemical species in Alpine firn. Tellus B 53:192–203CrossRefGoogle Scholar
  10. Eichler A, Tobler L, Eyrikh S, Gramlich G, Malygina N, Papina T, Schwikowski M (2012) Three centuries of Eastern European and Altai lead emissions recorded in a Belukha ice core. Environ Sci Technol 46:4323–4330CrossRefGoogle Scholar
  11. Eichler A, Tobler L, Eyrikh S, Malygina N, Papina T, Schwikowski M (2014) Icecore based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the soviet union. Environ Sci Technol 48:2635–2642CrossRefGoogle Scholar
  12. EPICA Community Members (2006) One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444:195–198CrossRefGoogle Scholar
  13. Evans SG, Tutubalina OV, Drobyshev VN, Chernomorets SS, McDougall S, Petrakov DA, Hungr O (2009) Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology 105:314–321CrossRefGoogle Scholar
  14. Gabrielli P, Carturan L, Gabrieli J, Dinale R, Krainer K, Hausmann H, Davis M, Zagorodnov V, Seppi R, Barbante C, Dalla Fontana G, Thompson LG (2010) Atmospheric warming threatens the untapped glacial archive of Ortles mountain, South Tyrol. J Glaciol 56:843–853CrossRefGoogle Scholar
  15. Gabrielli P, Barbante C, Carturan L, Cozzi G, Dalla Fontana G et al (2012) Discovery of cold ice in a new drilling site in the Eastern European Alps. Geogr Fis Dinam Quat 35:101–105Google Scholar
  16. Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5:173–187CrossRefGoogle Scholar
  17. Jenk TM, Szidat S, Schwikowski M, Gäggeler HW, Brütsch S, Wacker L, Synal H-A, Saurer M (2006) Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos Chem Phys 6:5381–5390CrossRefGoogle Scholar
  18. Jouzel J (2013) A brief history of ice core science over the last 50 yr. Clim Past 9:2525–2547CrossRefGoogle Scholar
  19. Kang S, Zhang Y, Qin D, Ren J, Zhang Q, Grigholm B, Mayewski P (2007) Recent temperature increase recorded in an ice core in the source region of Yangtze River. Chin Sci Bull 52:825–831CrossRefGoogle Scholar
  20. Kaspari S, Mayewski PA, Kang S, Sneed S, Hou S, Hooke R, Kreutz K, Introne D, Handley M, Maasch K, Qin D, Ren J (2007) Reduction in northward incursions of the South Asian monsoon since 1400 AD inferred from a Mt. Everest ice core. Geophys Res Lett 34:L16701Google Scholar
  21. Khokhlova OS, Khokhlov AA, Oleynik SA, Gabuev TA, Malashev VYu (2007) Paleosols from the groups of burial mounds provide paleoclimatic records of centennial to intercentennial time scale: a case study from the Early Alan cemeteries in the Northern Caucasus (Russia). Catena 71:477–486CrossRefGoogle Scholar
  22. Koerner RM (1997) Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J Glaciol 43:90–97CrossRefGoogle Scholar
  23. Kotlyakov VM, Rototaeva OV, Desinov LV, Zotikov IA, Osokin NI (2002) Causes and effects of a catastrophic surge of Kolka Glacier in the Central Caucasus. Z Gletscherkd Glazialgeol 38:117–128Google Scholar
  24. Kutuzov S, Ginot P, Mikhalenko V, Shahgedanova M, Lavrentiev I (2017) Characteristics of dust deposition at high elevation sites recorded in shallow ice cores, Mt. Elbrus and Mt. Kazbek, Caucasus, Russia. Environ Res Lett (in preparation) Google Scholar
  25. Kutuzov S, Shahgedanova M, Mikhalenko V, Ginot P, Lavrentiev I, Kemp S (2013) High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. Cryosphere 7:1481–1498CrossRefGoogle Scholar
  26. Kutuzov SS, Mikhalenko VN, Shahgedanova MV, Ginot P, Kozachek AV, Kuderina TM, Lavrentiev II, Popov GV (2014) Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Led i sneg 3:5–15 (in Russian) Google Scholar
  27. Lavrentiev II, Mkhalenko VN, Kutuzov SS (2010) Tolshina l’da i podledniy rel’ef Zapadnogo lednikovogo plato Elbrusa. Led i sneg 2:12–18 (in Russian) Google Scholar
  28. Legrand M, Preunkert S, May B, Guilhermet J, Hoffman H, Wagenbach D (2013) Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: implications for the long-term change of organic aerosol over Europe. J Geophys Res-Atmos 118:3879–3890CrossRefGoogle Scholar
  29. Likhodeev DV, Mikhalenko VN (2012) Temperatura krovli magmaticheskoy kameri vulkana Elbrus. Geofizicheckie Issled 13:70–75 (in Russian) Google Scholar
  30. Luthi MP, Funk M (2001) Modelling heat ow in a cold, high altitude glacier: interpretation of measurements from Colle Gnifetti, Swiss Alps. J Glaciol 47:314–324CrossRefGoogle Scholar
  31. Mariani I, Eichler A, Jenk TM, Broennimann S, Auchmann R, Leuenberger MC, Schwikowski M (2014) Temperature and precipitation signal in two Alpine ice cores over the period 1961-2001. Clim Past 10:1093–1108CrossRefGoogle Scholar
  32. Matoba S, Shimbori K, Shiraiwa T (2014) Alpine ice-core drilling in the North Pacific region. Ann Glaciol 55:83–87CrossRefGoogle Scholar
  33. Maupetit F, Wagenbach D, Weddeling P, Delmas RJ (1995) Seasonal fluxes of major ions to a high altitude cold alpine glacier. Atmos Environ 29:1–9CrossRefGoogle Scholar
  34. Mikhalenko V, Sokratov S, Kutuzov S, Ginot P, Legrand M, Preunkert S, Lavrentiev I, Kozachek A, Ekaykin A, Faïn X, Lim S, Schotterer U, Lipenkov V, Toropov P (2015) Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. Cryosphere 9:2253–2270CrossRefGoogle Scholar
  35. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  36. Nye JF (1963) Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J Glaciol 4:785–788CrossRefGoogle Scholar
  37. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  38. Preunkert S, Wagenbach D, Legrand M, Vincent C (2000) Col du Dome (Mt. Blanc Massif, French Alps) suitability for ice-core studies in relation with past atmospheric chemistry over Europe. Tellus Ser B 52:993–1012Google Scholar
  39. Preunkert S, Legrand M, Wagenbach D (2001) Sulfate trends in a Col du Dome (French Alps) ice core: a record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century. J Geophys Res-Atmos 106:31991–32004CrossRefGoogle Scholar
  40. Pushcharovskiy DY (2000) Rentgenografiya mineralov. Geoinformmark, Moscow, p 292Google Scholar
  41. Schotterer U, Fröhlich K, Gäggeler HW, Sandjordj S, Stichler W (1997) Isotope records from Mongolian and Alpine ice cores as climate indicators. Clim Change 36:519–530CrossRefGoogle Scholar
  42. Schotterer U, Stichler W, Graf W, Bürki H U, Gourcey L, Ginot P, Huber T (2002) Stable isotopes in alpine ice cores: do they record climate variability? In: Proceedings of an international symposium on the study of environmental change using isotope techniques, 23–27 April 2001, IAEA, ViennaGoogle Scholar
  43. Schwikowski M, Brutsch S, Gaggeler HW, Schotterer U (1999) A high-resolution air chemistry record from an Alpine ice core: fiescherhorn glacier, Swiss Alps. J Geophys Res 104:13709–13719CrossRefGoogle Scholar
  44. Serebryany LR, Golodkovskaya NA, Orlov AV, Malyasova ES, Il’ves EO (1984) Kolebaniya lednikov i protsessy morenonakopleniya na Tsentralnom Kavkaze (Glacier variations and moraine accumulation: processes in Central Caucasus), Nauka, Moscow, 216 p. (in Russian) Google Scholar
  45. Shahgedanova M, Kutuzov S, White K, Nosenko G (2013) Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and provenancing of desert dust events recorded in snow pack. Atmos Chem Phys 13:1797–1808CrossRefGoogle Scholar
  46. Solomina ON, Kalugin IA, Aleksandrin MYu, Bushueva IS, Darin AV, Dolgova EA, Jomelli V, Ivanov MN, Matskovsky VV, Ovchinnikov DV, Pavlova IO, Razumovsky LV, Chepurnaya AA (2013) Burenie osadkov ozera Kara-Kel’ (dolina reki Teberdy) I perspektivy rekonstruktsii istorii oledeneniya i klamata golotsena na Kavkaze (Coring of Karakel’ Lake sediments (Teberda River valley) and prospects for reconstruction of glaciation and Holocene climate history in the Caucasus). Led i sneg 2:102–111 (in Russian) Google Scholar
  47. Solomina ON, Kalugin IA, Darin AV, Chepurnaya AA, Alexandrin MY, Kuderina TM (2014) Ispol’zovaniye geokhimicheskogo i pyl’tsevogo analizov otlozheniy oz. Karakel’ dlya rekonstruktsii klimaticheskikh izmeneniy v doline r. Teberda (Severnyy Kavkaz) v pozdnem golotsene: vozmozhnosti i ogranicheniya (The implementation of geochemical and palynological analyses of the sediment core of Lake Karakyol for reconstructions of climatic changes in the valley of Teberda River (Northern Caucasus) during the Late Holocene: possibilities and restrictions)). Voprosy geografii 137. Gornyye issledovaniya. Gornyye regiony Severnoy Yevrazii. Razvitiye v usloviyakh global’nykh izmeneniy, Codex, Moscow. pp 234–266 (in Russian) Google Scholar
  48. Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res 114:D17102CrossRefGoogle Scholar
  49. Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan Ice core. Science 276:1821–1827CrossRefGoogle Scholar
  50. Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin P-N (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science 289:1916–1919CrossRefGoogle Scholar
  51. Vasilenko E, Machío F, Lapazaran J, Navarro FJ, Frolovskiy K (2011) A compact lightweight multipurpose ground-penetrating radar for glaciological applications. J Glaciol 57:1113–1118CrossRefGoogle Scholar
  52. Vincent C, Le Meur E, Six D, Possenti P, Lefebvre E, Funk M (2007) Climate warming revealed by englacial temperatures at Col du Dome (4250 m, Mont Blanc area). Geophys Res Lett 34:L16502CrossRefGoogle Scholar
  53. Volodicheva NA (2002) The Caucasus. In: Shahgedanova M (ed) The physical geography of Northern Eurasia. Oxford University Press, Oxford, pp 284–313Google Scholar
  54. Wagenbach D, Geis K (1989) The mineral dust record in a high-altitude Alpine Glacier (Colle-Gnifetti, Swiss Alps). Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport, Ed. Leinen M; Sarnthein M. NATO Adv Sci Inst Ser, Ser C Math Phys Sci 282:543–564Google Scholar
  55. Wagenbach D, Münnich KO, Schotterer U, Oeschger H (1988) The anthropogenic impact on snow chemistry at Colle Gnifetti, Swiss Alps. Ann Glaciol 10:183–187CrossRefGoogle Scholar
  56. Wu GJ, Zhang XL, Zhang CL, Gao SP, Li ZQ, Wang FT, Wang WB (2010) Concentration and composition of dust particles in surface snow at Urumqi Glacier No. 1. Eastern Tien Shan Global Planet Change 74:34–42CrossRefGoogle Scholar
  57. Wu GJ, Zhang CL, Zhang XL, Xu TL, Yan N, Gao SP (2015) The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Global Planet Change 124:22–29CrossRefGoogle Scholar
  58. Zagorodnov V, Nagornov O, Thompson LG (2006) Influence of air temperature on a glacier’s active-layer temperature. Ann Glaciol 43:285–291CrossRefGoogle Scholar
  59. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M et al (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762CrossRefGoogle Scholar
  60. Zhang Q, Kang S, Gabrielli P, Loewen M, Schwikowski M (2015) Vanishing high mountain glacial archives: challenges and perspectives. Environ Sci Technol 49:9499–9500. doi: 10.1021/acs.est.5b03066 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stanislav S. Kutuzov
    • 1
  • Vladimir N. Mikhalenko
    • 1
  • Alexi M. Grachev
    • 1
  • Patrick Ginot
    • 2
    • 3
  • Ivan I. Lavrentiev
    • 1
  • Anna V. Kozachek
    • 4
  • Victoria V. Krupskaya
    • 5
    • 6
  • Alexey A. Ekaykin
    • 4
    • 7
  • Levan G. Tielidze
    • 8
  • Pavel A. Toropov
    • 9
  1. 1.Department of GlaciologyInstitute of Geography of the Russian Academy of SciencesMoscowRussia
  2. 2.Observatoire des Sciences de l’Univers de Grenoble (OSUG), IRD-UGA-CNRSGrenobleFrance
  3. 3.Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)UGA-CNRSGrenobleFrance
  4. 4.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  5. 5.Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry of the Russian Academy of SciencesMoscowRussia
  6. 6.Department of Engineering and Ecological Geology, Faculty of GeologyMoscow State UniversityMoscowRussia
  7. 7.Institute of Earth SciencesSaint Petersburg State UniversitySaint PetersburgRussia
  8. 8.Department of Geomorphology, Vakhushti Bagrationi Institute of GeographyIvane, Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  9. 9.Department of Meteorology and Climatology, Faculty of GeographyMoscow State UniversityMoscowRussia

Personalised recommendations