Advertisement

Environmental Earth Sciences

, 75:1427 | Cite as

Relationship between irrigation water demand and yield of selected crops in Germany between 1902 and 2010: a modeling study

  • Katrin DrastigEmail author
  • Judy Libra
  • Simone Kraatz
  • Hagen Koch
Thematic Issue
Part of the following topical collections:
  1. Water in Germany

Abstract

The demand for irrigation water is increasing worldwide, including regions in Germany with low precipitation and water-demanding crops. In this study, history of irrigation water demand (IWD) in the German nation states in relation to the yield of four crops (1) potato, (2) spring barley, (3) oat, and (4) winter wheat, during droughts between 1902 and 2010 was analyzed. The difficulties caused by the shifting borders of the German nation state over the past century were dealt with by dividing the data for the region into four time periods for the analysis. Low precipitation during droughts influenced crop yield in the German nation states. Analyses of droughts resulted in no clear conclusions; however, it appeared that after 1950, German nation states droughts had a negative influence on the yield of the four crops despite the important role irrigation played in German agriculture since 1960 in the German nation state. Lower yield because of weather conditions since 1950 was primarily attributable to the high-yield potential of improved crop varieties, for which yield potential is only reached under optimal growing conditions. In this study, the analysis of the modeled historical IWD in agriculture revealed the urgency with which the German crop production systems must adapt to extremes in a changing climate not only by improving irrigation systems via irrigation scheduling but also by greater higher diversification of crops.

Keywords

Germany Irrigation water demand AgroHyd Farmmodel Agricultural yield Potato Wheat Barley Oat 

Notes

Acknowledgements

This work was supported by the Leibniz Competition (formerly SAW Procedure) within the Leibniz Association, Grant Number SAW-2011-ATB-5. The authors gratefully acknowledge the support from two anonymous reviewers.

References

  1. Alcamo JM, Döll P, Henrichs T, Kaspar F, Lehner B, Rösch T, Siebert S (2003) Development and testing of the WaterGAP2 global model of water use and availability. Hydrol Sci J 48:317–337. doi: 10.1623/hysj.48.3.317.45290 CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.http://www.fao.org/docrep/X0490E/X0490E00.htm. Accessed 31 Oct 2016  Google Scholar
  3. Aus der Beek T, Flörke M, Lapola DM, Schaldach R, Voß F, Teichert E (2010) Modelling historical and current irrigation water demand on the continental scale. Eur Adv Geosci 27:79–85. doi: 10.5194/adgeo-27-79-2010 CrossRefGoogle Scholar
  4. Bennett J (2003) Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. In: Kijne J, Barker R, Molden M (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI, Sri LankaGoogle Scholar
  5. BGR (2007) Soil Map of Germany 1:1,000,000 (BÜK1000). Federal Institute for Geosciences and Natural Resources, HannoverGoogle Scholar
  6. BKG (2011) Bundesamt für Kartographie und Geodäsie, Germany VG 2500 Verwaltungsgebiete (Ebenen) 1:2.500.000. Version January 2009. Frankfurt am MainGoogle Scholar
  7. Braden H (1985) Ein Energiehaushalts- und Verdunstungsmodell fuer Wasser und Stoffhaushaltsuntersuchungen landwirtschaftlich genutzter Einzugsgebiete. Mitt Dtsch Bodenkdl Ges 1985(42):294–299Google Scholar
  8. Destatis (2004) Statistik der Wasserversorgung in der Landwirtschaft 2002. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, Germany. https://www.destatis.de/DE/Publikationen/Thematisch/UmweltstatistischeErhebungen/Wasserwirtschaft/WasserversorgungLandwirtschaft.html. Accessed 16 Oct 2016
  9. Destatis (2010) Census of agriculture-main survey. In: Genesis-Online (ed) EVAS 41141-0001. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, Germany. https://www-genesis.destatis.de/genesis/online/data;jsessionid=D94AC907BB5573605A33BA2CD69E31E6.tomcat_GO_1_3?operation=begriffsRecherche&suchanweisung_language=en&suchanweisung=41141-0001. Accessed 16 Oct 2016
  10. Destatis (2013a) Bewässerung in landwirtschaftlichen Betrieben/Agrarstrukturerhebung Irrigation in agriculture-main survey. In: Statistisches Bundesamt W (ed) 5411205139004. Federal Statistical Office. Wiesbaden, Germany. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/Betriebe/BetriebeBewaesserung.html. Accessed 16 Oct 2016
  11. Destatis (2013b) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 1953–1990 for the Federal Republic of Germany, DigiZeitschriften e.V.. Göttingen, GermanyGoogle Scholar
  12. Destatis (2013c) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 1991–2005 for the Federal Republic of Germany, DigiZeitschriften e.V., Göttingen, GermanyGoogle Scholar
  13. Destatis (2013d) In: Federal Statistical Office, Germany (ed) Statistical Yearbook 2006–2013 for the Federal Republic of Germany. Statistisches Bundesamt Federal Statistical Office. Wiesbaden, GermanyGoogle Scholar
  14. Deutscher Bundestag (2008) German Strategy for Adaptation to Climate Change—Deutsche Anpassungsstrategie an den Klimawandel. Bundestagsdrucksache16/11595. BerlinGoogle Scholar
  15. Drastig, K, Prochnow A, Brunsch, R (2011) Wassermanagement in der Landwirtschaft. Berlin-Brandenburgische Akademie der Wissenschaften, Diskussionspapier, 3Google Scholar
  16. Drastig K, Prochnow A, Kraatz S, Libra J, Krauß M, Döring K et al (2012) Modeling the water demand on farms. Adv Geosci 10:1–6. doi: 10.5194/adgeo-32-9-2012 Google Scholar
  17. Drastig K, Prochnow A, Libra J, Koch H, Rolinski S (2016a) Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010. Sci Total Environ 569:1299–1314. doi: 10.1016/j.scitotenv.2016.06.206 CrossRefGoogle Scholar
  18. Drastig K, Palhares JCP, Karbach K, Prochnow A (2016b) Farm water productivity in broiler production: case studies in Brazil. J Clean Prod 135:9–19. doi: 10.1016/j.jclepro.2016.06.052 CrossRefGoogle Scholar
  19. Federal Statistical Office and the statistical Offices of the Länder (2011) Agrarstrukturen in Deutschland—Einheit in Vielfalt. Federal Statistical Office and the statistical Offices of the Länder. https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/Landwirtschaftzaehlung/AgrarstruktureninDeutschland.html. Accessed 16 Nov 2016
  20. Fischer G, F, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2009) FAO/IIASA/ISRIC/ISSCAS/JRC harmonized world soil database (version 1.1). In: FAO (ed) IIASA, LaxenburgGoogle Scholar
  21. FVF (2008) Basisinformationen zur Beregnung. Fachverband Feldberegnung in Niedersachsen e.VGoogle Scholar
  22. Garcia-Garizabalm I, Causape J, Abrahao R (2014) Changes in irrigation management and quantity and quality of drainage water in a traditional irrigated land. Environ Earth Sci 72:233–242. doi: 10.1007/s12665-013-2949-z CrossRefGoogle Scholar
  23. Gerstengarbe FW, Badeck F, Hattermann F, Krysanova V, Lahmer W, Lasch P et al (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und deren Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie Ableitung erster Perspektiven. PIK-Report. Potsdam Institute for Climate Impact Research (PIK), Potsdam, GermanyGoogle Scholar
  24. Görmann H, Bender A, Bolte A, Dirksmeyer W, Englert H, Feil J-H et al (2015) Agrarrelevante Extremwetterlagen und Möglichkeiten von Risikomanagementsystemen. Thünen ReportGoogle Scholar
  25. Hanke B (1986) Taschenbuch der Bewässerung, Wasser in der Pflanzenproduktion. VEB Deutscher Landwirtschaftsverlag, BerlinGoogle Scholar
  26. Heidt (2009) Auswirkungen des Klimawandels auf die potentielle Beregnungsbedürftigkeit Nordost-Niedersachsens. Geoberichte 13:60–67Google Scholar
  27. Hubatsch, W, Klein, T (1975) Grundriß der deutschen Verwaltungsgeschichte. MarburgGoogle Scholar
  28. Igbadun HE, Tarimo AKPR, Salim BA, Mahoo HF (2007) Evaluation of selected crop water production functions for an irrigated maize crop. Agric Water Manag 94:1–10. doi: 10.1016/j.agwat.2007.07.006 CrossRefGoogle Scholar
  29. Krauss M, Kraatz S, Drastig K, Prochnow A (2015) The influence of dairy management strategies on water productivity of milk production. Agric Water Manag 147:175–186. doi: 10.1016/j.agwat.2014.07.015 CrossRefGoogle Scholar
  30. Kunz A, Dietze L (2007) HGIS Germany Institut fuer Europaeische Geschichte (Mainz, Rhineland-Palatinate, Germany). www.hgis-germany.de. Accessed 15 May 2015
  31. Kutschera L, Lichtenegger E, Sobotik M (2009) Wurzelatlas der Kulturpflanzen gemäßigter Gebiete mit Arten des Feldgemüsebaues. DLG-Verlag, Frankfurt am MainGoogle Scholar
  32. Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87. doi: 10.1038/nature16467 CrossRefGoogle Scholar
  33. Liu T-M, Wang Y, Zou W, Sun D-F, Lang LB, Cao W-X (2010) Simulation model of barley leaf area index. Chin J Appl Ecol 21:121–128Google Scholar
  34. LUA (2004) Leitfaden zur Renaturierung von Feuchtgebieten in Brandenburg. Studien und Tagungsberichte des Landesumweltamtes 50. Landesumweltamt Brandenburg, Potsdam. http://www.lugv.brandenburg.de/cms/media.php/lbm1.a.3310.de/lua_bd50.pdf. Accessed 16 Oct 2016
  35. Michel R, Sourell H (2014) Bewässerung in der Landwirtschaft. Erling-Verlag, ClenzeGoogle Scholar
  36. MPIDR, CGG (2011) MPIDR (Max Planck Institute for Demographic Research) and CGG (Chair for Geodesy and Geoinformatics, Population History GIS Collection (partly based on Bundesamt für Kartographie und Geodäsie 2011) RostockGoogle Scholar
  37. Munich RE (2015) Topics GEO natural catastrophes 2014—analyses, assessments, positions. https://www.munichre.com/site/touchpublications/get/documents_E1018449711/mr/assetpool.shared/Documents/5_Touch/_Publications/302-08606_en.pdf. Accessed 31 Oct 2016
  38. Österle H (2001) Reconstruction of daily global radiation for past years for use in agricultural models. Phys Chem Earth Part B 2001(26):253–256. doi: 10.1016/S1464-1909(00)00248-3 CrossRefGoogle Scholar
  39. Österle H, Gerstengarbe F-W, Werner PC (2006) Qualitätsprüfung, Ergänzung und Homogenisierung der täglichen Datentreihen in Deutschland, 1951–2003: Ein neuer Datensatz. 7. Deutsche Klimatagung. Klimatrends: Vergangenheit und Zukunft. Meteorologisches Institut der Ludwig-Maximilians-Universität, MünchenGoogle Scholar
  40. Paschold P-J, Kleber J, Mayer N (2002) Geisenheim irrigation scheduling 2002. Zeitschrift für Bewässerungswirtschaft 37:5–15Google Scholar
  41. Prochnow A, Drastig K, Klauss H, Berg W (2012) Water use indicators at farm scale: methodology and case study. Food Energy Secur 1:29–46. doi: 10.1002/fes3.6 CrossRefGoogle Scholar
  42. Riediger J, Breckling B, Nuske RS, Schröder W (2014) Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environ Sci Eur 26:18. doi: 10.1186/s12302-014-0018-1 CrossRefGoogle Scholar
  43. Rosegrant MW, Cai X, Cline SA (2002) World water and food to 2025: dealing with scarcity. IFPRI, WashingtonGoogle Scholar
  44. Roth D, Eggers T, Seeßelberg F, Albrecht M (1995) Status of sprinkler irrigation in Germany—an analysis of the Federal Sprinkler Irrigation Association. Zeitschrift für Bewässerungswirtschaft 2(95):113–120Google Scholar
  45. Särekanno M, Kadaja J, Kotkas K, Rosenberg V, Vasar V, Ojarand A (2010) Dependence of leaf area index on different multiplication methods of potato meristem plants grown under field conditions. Acta Agric Scand Sect B 60:1–9. doi: 10.1080/09064710802513760 Google Scholar
  46. Schaldach R, Koch J, der Beek TA, Kynast E, Flörke M (2012) Current and future irrigation water requirements in pan-Europe: an integrated analysis of socio-economic and climate scenarios. Glob Planet Chang 94–95:33–45CrossRefGoogle Scholar
  47. Schirach F, Wenkel KO, Germar R (1988) Sprinkling recommendations for practice using the systems IBSB-2 and BEREST. Gartenbau 35:199–202Google Scholar
  48. Schmidt T, Osterburg B (2013) Berichtsmodul ‘Landwirtschaft und Umwelt’ in den Umweltökonomischen Gesamtrechnungen https://www.destatis.de/DE/Publikationen/Thematisch/UmweltoekonomischeGesamtrechnungen/SchmidtOsterburg2004.pdf?__blob=publicationFile. Accessed 16 Oct 16
  49. Schonnop G (1955) Der gegenwärtige Stand der Feldberegnung. Landtechnik 10:200–202Google Scholar
  50. Schönwiese C-D, Janoschitz R (2008) Klima-Trendatlas Deutschland 1901–2000 (Climate Trend Atlas Germany 1901–2000). Second ed. Universitätsbibliothek Johann Christian Senckenberg, Frankfurt/Main. https://www.uni-frankfurt.de/45447808/Inst_Ber_4_21.pdf. Accessed 16 Oct 16
  51. Scurlock JMO, Asner GP, Gower ST (2001) Global leaf area index data from field measurements, 1932–2000. Oak Ridge National Laboratory Distributed Active Archive Center, Oak RidgeGoogle Scholar
  52. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32. doi: 10.1080/02508060008686794 CrossRefGoogle Scholar
  53. Steidl J, Schuler J, Schubert U, Dietrich O, Zander P (2015) Expansion of an existing water management model for the analysis of opportunities and impacts of agricultural irrigation under climate change conditions. Water 7:6351–6377. doi: 10.3390/w7116351 CrossRefGoogle Scholar
  54. StRA (2013) In: Statistisches Reichsamt (ed) Statistical Yearbook 1919–1943 for the German Nation State. DigiZeitschriften e.V., Göttingen, Germany, http://www.digizeitschriften.de/dms/toc/?PID=PPN514401303. Accessed 16 Oct 16
  55. Supit I, van Diepen CA, de Wit AJW, Wolf J, Kabat P, Baruth B et al (2012) Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric For Meteorol 164:96–111. doi: 10.1016/j.agrformet.2012.05.005 CrossRefGoogle Scholar
  56. SZS (2013). In: Staatliche Zentralverwaltung für Statistik (ed) Statistical Yearbook 1956–1991 for the Democratic Republic of Germany. DigiZeitschriften e.V., Göttingen, Germany. http://www.digizeitschriften.de/dms/toc/?PID=PPN514402644. Accessed 16 Oct 2016
  57. Trömel S, Schönwiese CD (2008) Robust trend estimation of observed German precipitation. Theor Appl Climatol 93:107–115. doi: 10.1007/s00704-007-0341-1 CrossRefGoogle Scholar
  58. UBA (2016) Rahmenbedingungen für die umweltgerechte Nutzung von behandeltem Abwasser zur landwirtschaftlichen Bewässerung. Guidelines for the environmentally sound agricultural water reuse. Umweltbundesamt. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_34_2016_rahmenbedingungen_fuer_die_umweltgerechte_nutzung_von_behandeltem_abwasser_0.pdf. Accessed 16 Oct 2016
  59. von Hoyningen-Huene J (1983) Die Interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen. DVWK Schriften 57:1–53Google Scholar
  60. WM (2008) Klimaschutz und Folgen des Klimawandels in Mecklenburg-Vorpommern. Studie aufgrund des Landtagsbeschlusses vom 29.03.2007. http://www.bauernverband-uer.de/uploads/media/Studie_Klimawandel_MV_06_1_.05.08.pdf. Accessed 16 Oct 2016
  61. WMO (2006) Drought monitoring and early warning: concepts, progress and future challenges. Technical report 1006 World Meteorological OrganisationGoogle Scholar
  62. Wolff P (1978) Bewässerungstechnik in der Evolution. Zeitschrift für Bewässerungswirtschaft 13:3–20Google Scholar
  63. Wolff P (2010) German pioneers of sprinkler irrigation within the 20. Century. Zeitschrift für Bewässerungswirtschaft 45:205–234Google Scholar
  64. Wriedt G, Van der Veld M, Aloe A, Bouraoui F (2009) Estimating irrigation water requirements in Europe. J Hydrol 373:527–544. doi: 10.1016/j.jhydrol.2009.05.018 CrossRefGoogle Scholar
  65. Zink M, Samaniego L, Kumar R, Thober S, Mai J, Schafer D et al (2016) The German drought monitor. Environ Res Lett. doi: 10.1088/1748-9326/11/7/074002 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB)PotsdamGermany
  2. 2.Potsdam Institute for Climate Impact Research (PIK)PotsdamGermany

Personalised recommendations