Environmental Earth Sciences

, 75:1390 | Cite as

Occurrence and distribution of selected potentially toxic elements in soils of playing sites: a case study from Bratislava, the capital of Slovakia

  • Edgar Hiller
  • Lucia Lachká
  • Ľubomír Jurkovič
  • Ondrej Ďurža
  • Katarína Fajčíková
  • Jaroslav Vozár
Original Article


This study investigates the occurrence and distribution of potentially toxic elements (PTEs) (As, Cd, Cu, Hg, Pb and Zn) in soils collected at playing sites in kindergartens and urban parks in Bratislava city. It was found that the history of urban development was an important factor influencing the occurrence of PTEs in soils. The mean concentrations of PTEs were two times higher (mean of 215 mg/kg for the sum of PTEs) in the oldest urban parts than in urban parts of the city with younger history (mean of 110 mg/kg). Significant positive correlations between the concentrations of Cu, Hg, Pb, Zn and total organic carbon content (Spearman r = 0.23–0.49; α < 0.05–0.001), as well as between the As, Cu, Pb, Zn concentrations and the total Fe content (Spearman r = 0.27–0.55; α < 0.05–0.001) indicated that soil characteristics had also influenced the distributions of PTEs in soils. The values of enrichment factor (EF) and contamination factor (CF) were higher than 1.5 and 1.0, respectively, confirming an anthropogenic contribution to the total concentrations of PTEs in soils. It is expected that there is no non-carcinogenic health risk to children due to exposure to PTEs in soils as the calculated values of hazard quotient (HQ) and hazard index (HI) did not exceed the threshold of 1.0.


Potentially toxic elements Urban soil Contamination Slovakia 



This work was supported financially by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Academy of Sciences (VEGA No. 1/0038/14) and by the grant from Comenius University in Bratislava No. 15/130/00. The authors acknowledge all directors of kindergartens who allowed us to collect the soil samples at playing sites. We thank the two anonymous reviewers for their constructive comments and recommendations to improve and support the manuscript. The authors thank Ray Marshall for thorough reviews of the English language in this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12665_2016_6210_MOESM1_ESM.pdf (577 kb)
Supplementary material 1 (PDF 576 kb)


  1. Atapour H (2015) Geochemistry of potentially harmful elements in topsoils around Kerman city, southeastern Iran. Environ Earth Sci 74:5605–5624. doi: 10.1007/s12665-015-4576-3 CrossRefGoogle Scholar
  2. Birke M, Rauch U (2000) Urban geochemistry: investigations in the Berlin metropolitan area. Environ Geochem Health 22:233–248. doi: 10.1023/A:1026554308673 CrossRefGoogle Scholar
  3. Bleam WF (2012) Soil and environmental chemistry. Academic Press-Elsevier, AmsterdamGoogle Scholar
  4. Borůvka L, Vacek O, Jehlička J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128:289–300. doi: 10.1016/j.geoderma.2005.04.010 CrossRefGoogle Scholar
  5. Bradl HB (2004) Adsorption of heavy metal ions on soils and soils constituents. J Colloid Interface Sci 277:1–18. doi: 10.1016/j.jcis.2004.04.005 CrossRefGoogle Scholar
  6. Burkhardt M, Rossi L, Boller M (2005) Particle emissions from railway installations and operations. EI-Eisenbahningenieur 56:18–22 (in German with English summary) Google Scholar
  7. Cachada A, Pereira ME, Ferreira da Silva E, Duarte AC (2012) Sources of potentially toxic elements and organic pollutants in an urban area subjected to an industrial impact. Environ Monit Assess 184:15–32. doi: 10.1007/s10661-011-1943-8 CrossRefGoogle Scholar
  8. Cachada A, Dias AC, Pato P, Mieiro C, Rocha-Santos T, Pereira ME, Ferreira da Silva E, Duarte AC (2013) Major inputs and mobility of potentially toxic elements contamination in urban areas. Environ Monit Assess 185:279–294. doi: 10.1007/s10661-012-2553-9 CrossRefGoogle Scholar
  9. CCME (2007) Canadian soil quality guidelines for the protection of environmental and human health. Canadian Council of Ministers of the Environment, WinnipegGoogle Scholar
  10. Chen T-B, Zheng Y-M, Lei M, Huang Z-C, Wu H-T, Chen H, Fan K-K, Yu K, Wu X, Tian Q-Z (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60:542–551. doi: 10.1016/j.chemosphere.2004.12.072 CrossRefGoogle Scholar
  11. Chen X, Xia X, Zhao Y, Zhang P (2010) Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J Hazard Mater 181:640–646. doi: 10.1016/j.jhazmat.2010.05.060 CrossRefGoogle Scholar
  12. Čurlík J, Šefčík P (1999) Geochemical atlas of Slovak Republic. Part V: soils. Soil Science and Conservation Research Institute, BratislavaGoogle Scholar
  13. Dao L, Morrison L, Zhang C (2010) Spatial variation of urban soil geochemistry in a roadside sports ground in Galway, Ireland. Sci Total Environ 408:1076–1084. doi: 10.1016/j.scitotenv.2009.11.022 CrossRefGoogle Scholar
  14. Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi: 10.1021/es030309t CrossRefGoogle Scholar
  15. Dragović S, Mihailović N, Gajić B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–495. doi: 10.1016/j.chemosphere.2008.02.063 CrossRefGoogle Scholar
  16. Galušková I, Borůvka L, Drábek O (2011) Urban soil contamination by potentially risk elements. Soil Water Res 6:55–60Google Scholar
  17. Galušková I, Mihaljevič M, Borůvka L, Drábek O, Frühauf M, Němeček K (2014) Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. J Geochem Explor 147:215–221. doi: 10.1016/j.gexplo.2014.02.022 CrossRefGoogle Scholar
  18. Giménez J, Martínez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580. doi: 10.1016/j.jhazmat.2006.07.020 CrossRefGoogle Scholar
  19. Glorennec P, Lucas J-P, Mandin C, Le Bot B (2012) French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: contamination data. Environ Int 45:129–134. doi: 10.1016/j.envint.2012.04.010 CrossRefGoogle Scholar
  20. Haugland T, Ottesen RT, Volden T (2008) Lead and polycyclic aromatic hydrocarbons (PAHs) in surface soil from day care centres in the city of Bergen, Norway. Environ Pollut 153:266–272. doi: 10.1016/j.envpol.2007.08.028 CrossRefGoogle Scholar
  21. Hiller E, Lachká L, Jurkovič Ľ, Vozár J (2015) Polycyclic aromatic hydrocarbons in urban soils from kindergartens and playgrounds in Bratislava, the capital city of Slovakia. Environ Earth Sci 73:7147–7156. doi: 10.1007/s12665-014-3894-1 CrossRefGoogle Scholar
  22. Hossain MA, Ali NM, Islam MS, Hossain HMZ (2015) Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia. Environ Earth Sci 73:115–126. doi: 10.1007/s12665-014-3398-z CrossRefGoogle Scholar
  23. Hricko J, Šefara J, Kružliak P, Martinovič M, Pospíšil M, Tkáčová H, Grand T, Szalaiová V (1993) Bratislava – the environment, abiotic component. Final report, Geocomplex Inc., Bratislava (in Slovak)Google Scholar
  24. Ikegami M, Yoneda M, Tsuji T, Bannai O, Morisawa S (2014) Effect of particle size on risk assessment of direct soil ingestion and metals adhered to children’s hands at playgrounds. Risk Anal 34:1677–1687. doi: 10.1111/risa.12215 CrossRefGoogle Scholar
  25. Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256. doi: 10.1016/S0269-7491(02)00478-5 CrossRefGoogle Scholar
  26. Iqbal J, Shah MH (2011) Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. J Hazard Mater 192:887–898. doi: 10.1016/j.jhazmat.2011.05.105 CrossRefGoogle Scholar
  27. Iwegbue CMA (2014) Impact of land use types on the concentrations of metals in soils of urban environment in Nigeria. Environ Earth Sci 72:4567–4585. doi: 10.1007/s12665-014-3355-x CrossRefGoogle Scholar
  28. Kahle P (2000) Heavy metals in garden soils from the urban area of Rostock. J Plant Nutr Soil Sci 163:191–196. doi: 10.1002/(SICI)1522-2624(200004) (in German with English abstract) CrossRefGoogle Scholar
  29. Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11:363–370. doi: 10.1016/0883-2927(95)00084-4 CrossRefGoogle Scholar
  30. Koller K, Brown T, Spurgeon A, Levy L (2004) Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Perspect 112:987–994. doi: 10.1289/ehp.6941 CrossRefGoogle Scholar
  31. Krčmová K, Robertson D, Cvečková V, Rapant S (2009) Road-deposited sediment, soil and precipitation (RDS) in Bratislava, Slovakia: compositional and spatial assessment of contamination. J Soil Sediment 9:304–316. doi: 10.1007/s11368-009-0097-6 CrossRefGoogle Scholar
  32. Lacatusu R, Lacatusu A-R, Lungu M, Breaban IG (2008) Macro- and microelements abundance in some urban soils from Romania. Carpth J Earth Environ Sci 3:75–83Google Scholar
  33. Li XD, Poon C-S, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368. doi: 10.1016/S0883-2927(01)00045-2 CrossRefGoogle Scholar
  34. Li F, Huang J, Zeng G, Liu W, Huang X, Huang B, Gu Y, Shi L, He X, He Y (2015) Toxic metals in topsoil under different land uses from Xiandao District, middle China: distribution, relationship with soil characteristics, and health risk assessment. Environ Sci Pollut Res 22:12261–12275. doi: 10.1007/s11356-015-4425-7 CrossRefGoogle Scholar
  35. Linde M, Bengtsson H, Öborn I (2001) Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut Focus 1:83–101. doi: 10.1023/A:1017599920280 CrossRefGoogle Scholar
  36. Ljung K, Selinus O, Otabbong E (2006) Metals in soils of children’s urban environments in the small northern European city of Uppsala. Sci Total Environ 366:749–759. doi: 10.1016/j.scitotenv.2005.09.073 CrossRefGoogle Scholar
  37. Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365. doi: 10.1007/BF02404766 Google Scholar
  38. Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165. doi: 10.1016/S0160-4120(03)00157-0 CrossRefGoogle Scholar
  39. Lu Y, Jia C, Zhang G, Zhao Y, Wilson MA (2016) Spatial distribution and source of potential toxic elements (PTEs) in urban soils of Guangzhou. China. Environ Earth Sci 75:329. doi: 10.1007/s12665-015-5190-0 CrossRefGoogle Scholar
  40. Luo X-S, Ding J, Xu B, Wang Y-J, Li H-B, Yu S (2012a) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 424:88–96. doi: 10.1016/j.scitotenv.2012.02.053 CrossRefGoogle Scholar
  41. Luo X-S, Yu S, Zhu Y-G, Li X-D (2012b) Trace metal contamination in urban soils of China. Sci Total Environ 421–422:17–30. doi: 10.1016/j.scitotenv.2011.04.020 CrossRefGoogle Scholar
  42. Madrid L, Díaz-Barrientos E, Madrid F (2002) Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 49:1301–1308. doi: 10.1016/S0045-6535(02)00530-1 CrossRefGoogle Scholar
  43. Madrid F, Díaz-Barrientos E, Madrid L (2008) Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Environ Pollut 156:605–610. doi: 10.1016/j.envpol.2008.06.023 CrossRefGoogle Scholar
  44. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243. doi: 10.1016/S0048-9697(02)00273-5 CrossRefGoogle Scholar
  45. Mielke HW, Gonzales CR, Smith MK, Mielke PW (1999) The urban environment and childrenʼs health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ Res 81:117–129. doi: 10.1006/enrs.1999.3966 CrossRefGoogle Scholar
  46. Mielke HW, Berry KJ, Mielke PW, Powell ET, Gonzales CR (2005) Multiple metal accumulation as a factor in learning achievement within various New Orleans elementary school communities. Environ Res 97:67–75. doi: 10.1016/j.envres.2004.01.011 CrossRefGoogle Scholar
  47. Obuchová V (2009) Industrial bratislava. Albert Marenčin–Vydavateľstvo PT, Bratislava (in Slovak)Google Scholar
  48. Ondruš J, Paľo J (2012) Analysis of motorization rate in regional cities of Slovakia. Doprava a Spoje 1:283–288. (In Slovak) http://fpedas.uniza.sk/dopravaaspoje/rok.php?rok=2012&c=1. Accessed 18 Jan 2016
  49. Ottesen RT, Alexander J, Langedal M, Haugland T, Høygaard E (2008) Soil pollution in day-care centers and playgrounds in Norway: national action plan for mapping and remediation. Environ Geochem Health 30:623–637. doi: 10.1007/s10653-008-9181-x CrossRefGoogle Scholar
  50. Paterson E, Sanka M, Clark L (1996) Urban soils as pollutant sinks – a case study from Aberdeen, Scotland. Appl Geochem 11:129–131. doi: 10.1016/0883-2927(95)00081-X CrossRefGoogle Scholar
  51. Praveena SM, Yuswir NS, Aris AZ, Hashim Z (2015) Contamination assessment and potential human health risks of heavy metals in Klang urban soils: a preliminary study. Environ Earth Sci 73:8155–8165. doi: 10.1007/s12665-014-3974-2 CrossRefGoogle Scholar
  52. Rimmer DL, Vizard CG, Pless-Mulloli T, Singleton I, Air VS, Keating ZAF (2006) Metal contamination of urban soils in the vicinity of a municipal waste incinerator: one source among many. Sci Total Environ 356:207–216. doi: 10.1016/j.scitotenv.2005.04.037 CrossRefGoogle Scholar
  53. Ruby MV, Lowney YW (2012) Selective soil particle adherence to hands: implications for understanding oral exposure to soil contaminants. Environ Sci Technol 46:12759–12771. doi: 10.1021/es302473q CrossRefGoogle Scholar
  54. Ruiz-Cortés E, Reinoso R, Díaz-Barrientos E, Madrid L (2005) Concentrations of potentially toxic metals in urban soils of Seville: relationship with different land uses. Environ Geochem Health 27:465–474. doi: 10.1007/s10653-005-4222-1 CrossRefGoogle Scholar
  55. Sapcanin A, Cakal M, Jacimovic Z, Pehlic E, Jancan G (2016) Soil pollution fingerprints of children playgrounds in Sarajevo city. Environ Sci Pollut Res, Bosnia and Herzegovina. doi: 10.1007/s11356-016-6301-5 Google Scholar
  56. SEPA (1996) Development of generic guideline values. Swedish Environmental Protection Agency, StockholmGoogle Scholar
  57. Sierra M, Martínez FJ, Aguilar J (2007) Baselines for trace elements and evaluation of environmental risk in soils of Almería (SE Spain). Geoderma 139:209–219. doi: 10.1016/j.geoderma.2007.02.003 CrossRefGoogle Scholar
  58. Sobocká J, Jaďuďa M, Ružeková-Poltárska K, Šurina B (2007) Urban soils (an example of Bratislava). Soil Science and Conservation Research Institute, Bratislava (in Slovak)Google Scholar
  59. Stanek EJ III, Calabrese EJ (1995) Daily estimates of soil ingestion in children. Environ Health Perspect 103:276–285CrossRefGoogle Scholar
  60. STN EN ISO/IEC 17025 (2005) General requirements for the competence of testing and calibration laboratories. Slovak Office of Standards, Metrology and Testing, BratislavaGoogle Scholar
  61. Tijhuis L, Brattli B, Sæther OM (2002) A geochemical survey of topsoil in the city of Oslo, Norway. Environ Geochem Health 24:67–94. doi: 10.1023/A:1013979700212 CrossRefGoogle Scholar
  62. US EPA (United States Environmental Protection Agency) (2011) Highlights of the exposure factors handbook. http://www.epa.gov/ncea. Accessed 5 Feb 2016
  63. US EPA (United States Environmental Protection Agency) (2013) Region IX, regional screening levels (formerly PRGs). http://www.epa.gov/region9/superfund/prg/index.html. Accessed 2 Feb 2016
  64. Vaškovský I, Brestenská E, Čechová A, Hanzel V, Horniš J, Kantor J, Miko O, Modlitba I, Vaškovská E (1984) Explanatory notes to the geological map 1:25000 of Bratislava – south. State Geological Institute of Dionýz Štúr, Bratislava (in Slovak)Google Scholar
  65. Vaškovský I, Kohút M, Nagy A, Plašienka D, Putiš M, Vaškovská E, Vozár J (1987) Brief explanatory notes to the geological map 1:25000 of Bratislava – north. State Geological Institute of Dionýz Štúr, Bratislava (in Slovak)Google Scholar
  66. Yamamoto N, Takahashi Y, Yoshinaga J, Tanaka A, Shibata Y (2006) Size distribution of soil particles adhered to children’s hands. Arch Environ Contam Toxicol 51:157–163. doi: 10.1007/s00244-005-7012-y CrossRefGoogle Scholar
  67. Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108:27–38. doi: 10.1016/j.gexplo.2010.09.006 CrossRefGoogle Scholar
  68. Závodský D (2008) Air pollution in Bratislava in 1965–2005. Meteorol J 11:89–98 (in Slovak with English abstract) Google Scholar
  69. Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142:501–511. doi: 10.1016/j.envpol.2005.10.028 CrossRefGoogle Scholar
  70. Zhang L, Ye X, Feng H, Jing Y, Ouyang T, Yu X, Liang R, Gao C, Chen W (2007) Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Mar Pollut Bull 54:974–982. doi: 10.1016/j.marpolbul.2007.02.010 CrossRefGoogle Scholar
  71. Zheng Y-M, Chen T-B, He J-Z (2008) Multivariate geostatistical analysis of heavy metals in topsoils from Beijing, China. J Soil Sediment 8:51–58. doi: 10.1065/jss2007.08.245 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Geochemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Department of Environmental GeochemistryState Geological Institute of Dionýz ŠtúrBratislavaSlovak Republic
  3. 3.Ecological Laboratories, EL Ltd.Spišská Nová VesSlovak Republic

Personalised recommendations