Environmental Earth Sciences

, 75:1356 | Cite as

Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin, NW China

  • Cheng Qian
  • Xiong Wu
  • Wen-Ping Mu
  • Rui-Zhi Fu
  • Ge Zhu
  • Zhuo-Ran Wang
  • Dan-dan Wang
Original Article

Abstract

Groundwater is vital to supply residents, livestock and agriculture in Daniudi gasfield area, which is a typical agro-pastoral area. To effectively protect and rationally utilize the groundwater, a hydrochemical investigation of 43 samples from this area was conducted. A hydrogeochemical assessment using a Piper diagram, correlation analysis, ratios of major ions, principle component analysis and saturation index calculations was carried out to detect the hydrochemical characteristics and evolution processes of the groundwater from a Quaternary aquifer (QA) and a Cretaceous aquifer (KA), and fuzzy synthetic evaluation and some water quality indices were applied to assess groundwater suitability for drinking and irrigation. According to the statistic summary, the average abundance of the major ions in groundwater from the QA and KA follows the order: HCO3 > SO42− > Cl for anions and Ca2+ > Na+ > Mg2+ > K+ for cations. There is evidence that the chemical composition of groundwater in the region has been influenced by human activities. The dominant hydrochemical facies of the groundwater is HCO3–Ca type. Dissolution of carbonate and evaporite minerals and the weathering of silicate minerals are likely to be the sources of major ions in groundwater. Ion exchange is another significant factor affecting the groundwater constituents. Gibbs diagrams suggest that rock weathering is the control process of groundwater chemical composition. As to suitability of groundwater for drinking, single parameter comparison and fuzzy comprehensive evaluation reveal that most of the groundwater in the study area is suitable for drinking under ordinary condition. A US Salinity Laboratory diagram, Wilcox diagram and some irrigation indices indicate that more than 90 % of the groundwater samples are suitable for use in irrigated agriculture.

Keywords

Hydrogeochemistry Groundwater suitability Fuzzy comprehensive evaluation Principle component analysis Agro-pastoral region Ordos Basin 

Notes

Acknowledgments

The research was supported by National Natural Science Foundation of China (No. 41572227), Fundamental Research Funds for the Central Universities (No. 2652015125) and Project supported by Ministry of Land and Resources of China (201511056-3).

References

  1. Abbas Z, Su C, Tahira F, Mapoma HWT, Aziz SZ (2015) Quality and hydrochemistry of groundwater used for drinking in Lahore, Pakistan: analysis of source and distributed groundwater. Environ Earth Sci 74:4281–4294. doi:10.1007/s12665-015-4432-5 CrossRefGoogle Scholar
  2. Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, northwest of Iran. J Environ Prot 01:30–40. doi:10.4236/jep.2010.11005 CrossRefGoogle Scholar
  3. Amiri V, Sohrabi N, Dadgar MA (2015) Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran. Environ Earth Sci 74:6163–6176. doi:10.1007/s12665-015-4638-6 CrossRefGoogle Scholar
  4. Atanackovic N, Dragisic V, Stojkovic J, Papic P, Zivanovic V (2013) Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality. Environ Sci Pollut Res Int 20:7615–7626. doi:10.1007/s11356-013-1959-4 CrossRefGoogle Scholar
  5. Cao Y (2009) Groundwater circulation patterns of typical lake area in Northern Ordos Cretaceous Basin. Dissertation, Jilin University (in Chinese) Google Scholar
  6. Chidambaram S, Anandhan P, Prasanna MV, Srinivasamoorthy K, Vasanthavigar M (2012) Major ion chemistry and identification of hydrogeochemical processes controlling groundwater in and around Neyveli Lignite Mines, Tamil Nadu, South India. Arab J Geosci 6:3451–3467. doi:10.1007/s12517-012-0589-3 CrossRefGoogle Scholar
  7. Dahiya S, Singh B, Gaur S, Garg VK, Kushwaha HS (2007) Analysis of groundwater quality using fuzzy synthetic evaluation. J Hazard Mater 147:938–946. doi:10.1016/j.jhazmat.2007.01.119 CrossRefGoogle Scholar
  8. Daniele L, Vallejos Á, Corbella M, Molina L, Pulido-Bosch A (2013) Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Appl Geochem 29:43–54. doi:10.1016/j.apgeochem.2012.11.011 CrossRefGoogle Scholar
  9. Dou Y (2010) Study on hydrogeochemical evolution and circulation in north of Ordos Cretaceous groundwater basin. Dissertation, Chang’an University (in Chinese) Google Scholar
  10. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090CrossRefGoogle Scholar
  11. He J, Ma J, Zhao W, Sun S (2015) Groundwater evolution and recharge determination of the Quaternary aquifer in the Shule River basin, Northwest China. Hydrogeol J 23:1745–1759. doi:10.1007/s10040-015-1311-9 CrossRefGoogle Scholar
  12. Hou G, Zhang MS (2008) Study on groundwater exploration in the Ordos Basin. Geological Publishing House, Beijing, pp 1–20 (in Chinese) Google Scholar
  13. Hou G, Liang Y, Su X (2008) Groundwater systems and resources in the Ordos Basin, China. Acta Geol Sin 82(5):1061–1069Google Scholar
  14. Jalali M (2006) Salinization of groundwater in arid and semi-arid zones: an example from Tajarak, western Iran. Environ Geol 52:1133–1149. doi:10.1007/s00254-006-0551-3 CrossRefGoogle Scholar
  15. Kelly WP (1963) Use of saline irrigation water. Soil Sci 95:355–391Google Scholar
  16. Kudoda AM, Abdalla OA (2015) Hydrochemical characterization of the main aquifers in Khartoum, the capital city of Sudan. Environ Earth Sci 74:4771–4786. doi:10.1007/s12665-015-4464-x CrossRefGoogle Scholar
  17. Kumar M, Kumari K, Singh UK, Ramanathan AL (2008) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57:873–884. doi:10.1007/s00254-008-1367-0 CrossRefGoogle Scholar
  18. Lghoul M, Maqsoud A, Hakkou R, Kchikach A (2014) Hydrogeochemical behavior around the abandoned Kettara mine site, Morocco. J Geochem Explor 144:456–467. doi:10.1016/j.gexplo.2013.12.003 CrossRefGoogle Scholar
  19. Li P, Wu J, Qian H (2012) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69:2211–2225. doi:10.1007/s12665-012-2049-5 CrossRefGoogle Scholar
  20. Li P, Qian H, Wu J, Zhang Y, Zhang H (2013) Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water Environ 32:195–206. doi:10.1007/s10230-013-0234-8 CrossRefGoogle Scholar
  21. Li P, Wu J, Qian H (2014a) Hydrogeochemistry and Quality assessment of shallow groundwater in the southern part of the Yellow River alluvial plain (Zhongwei section), Northwest China. Earth Sci Res J 18(1):27–38CrossRefGoogle Scholar
  22. Li Y, Hu FS, Xue ZQ, Yu YQ, Wu P (2014b) Hydrogeochemical and isotopic characteristics of groundwater in the salt chemical industrial base of Guyuan City, northwestern China. Arab J Geosci 8:3427–3440. doi:10.1007/s12517-014-1442-7 CrossRefGoogle Scholar
  23. Liu F, Song X, Yang L, Han D, Zhang Y, Ma Y, Bu H (2015) The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Sci Total Environ 538:327–340. doi:10.1016/j.scitotenv.2015.08.057 CrossRefGoogle Scholar
  24. Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23:863–894. doi:10.1016/j.apgeochem.2007.07.011 CrossRefGoogle Scholar
  25. Murkute YA (2014) Hydrogeochemical characterization and quality assessment of groundwater around Umrer coal mine area Nagpur District, Maharashtra, India. Environ Earth Sci 72:4059–4073. doi:10.1007/s12665-014-3295-5 CrossRefGoogle Scholar
  26. Naseem S, Hamaza S, Bashir E (2010) Ground water geochemistry of winder agricultural farms, Balochistan, Pakistan and assessment for irrigation water quality. Eur Water 31:21–32Google Scholar
  27. Odukoya AM (2015) Geochemical and quality assessment of groundwater in some Nigerian basement complex. Int J Environ Sci Technol 12:3643–3656. doi:10.1007/s13762-015-0789-y CrossRefGoogle Scholar
  28. Rao NS (2002) geochemistry of groundwater in parts of Guntur district, Andhra Pradesh, India. Environ Geol 41:552–562CrossRefGoogle Scholar
  29. Ravikumar P, Somashekar RK (2011) Geochemistry of groundwater, Markandeya River Basin, Belgaum district, Karnataka State, India. Chin J Geochem 30:51–74. doi:10.1007/s11631-011-0486-6 CrossRefGoogle Scholar
  30. Re V, Sacchi E, Mas-Pla J, Mencio´ A, El Amrani N (2014) Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). Sci Total Environ 500:211–223CrossRefGoogle Scholar
  31. Salem ZE, Atwia MG, El-Horiny MM (2015) Hydrogeochemical analysis and evaluation of groundwater in the reclaimed small basin of Abu Mina, Egypt. Hydrogeol J 23:1781–1797. doi:10.1007/s10040-015-1303-9 CrossRefGoogle Scholar
  32. Schoeller H (1977) Geochemistry of groundwater. Groundwater studies-an international guide for research and practice. UNESCO, Paris, pp 1–18Google Scholar
  33. Sethy SN, Syed TH, Kumar A, Sinha D (2016) Hydrogeochemical characterization and quality assessment of groundwater in parts of Southern Gangetic Plain. Environ Earth Sci 75:232. doi:10.1007/s12665-015-5049-4 CrossRefGoogle Scholar
  34. Shyu GS, Cheng BY, Chiang CT, Yao PH, Chang TK (2011) Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. Int J Environ Res Pub Health 8:1084–1109. doi:10.3390/ijerph8041084 CrossRefGoogle Scholar
  35. Singh B, Dahiya S, Jain S, Garg VK, Kushwaha HS (2007) Use of fuzzy synthetic evaluation for assessment of groundwater quality for drinking usage: a case study of Southern Haryana, India. Environ Geol 54:249–255. doi:10.1007/s00254-007-0812-9 CrossRefGoogle Scholar
  36. Tanasković I, Golobocanin D, Miljević N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234. doi:10.1016/j.gexplo.2011.08.014 CrossRefGoogle Scholar
  37. Valdes D, Dupont J-P, Laignel B, Ogier S, Leboulanger T, Mahler BJ (2007) A spatial analysis of structural controls on Karst groundwater geochemistry at a regional scale. J Hydrol 340(3–4):244–255CrossRefGoogle Scholar
  38. Wang H, Jiang X-W, Wan L, Han G, Guo H (2015) Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin. J Hydrol 527:433–441. doi:10.1016/j.jhydrol.2015.04.063 CrossRefGoogle Scholar
  39. Wilcox LV (1948) The quality of water for irrigation use. US Dept of Agricultural Tech Bull 1962, WashingtonGoogle Scholar
  40. Wu J, Li P, Qian H, Duan Z, Zhang X (2013) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7:3973–3982. doi:10.1007/s12517-013-1057-4 CrossRefGoogle Scholar
  41. Xiao J, Jin Z, Wang J (2014a) Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China. Environ Manage 53:135–146. doi:10.1007/s00267-013-0198-2 CrossRefGoogle Scholar
  42. Xiao J, Jin Z, Wang J (2014b) Geochemistry of trace elements and water quality assessment of natural water within the Tarim River Basin in the extreme arid region, NW China. J Geochem Explor 136:118–126. doi:10.1016/j.gexplo.2013.10.013 CrossRefGoogle Scholar
  43. Xiao J, Jin ZD, Wang J, Zhang F (2015) Hydrochemical characteristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau. Quatern Int 380–381:237–246. doi:10.1016/j.quaint.2015.01.021 CrossRefGoogle Scholar
  44. Yin L, Hou G, Dou Y, Tao Z, Li Y (2009) Hydrogeochemical and isotopic study of groundwater in the Habor Lake Basin of the Ordos Plateau, NW China. Environ Earth Sci 64:1575–1584. doi:10.1007/s12665-009-0383-z CrossRefGoogle Scholar
  45. Zhang B, Song X, Zhang Y, Han D, Tang C, Yu Y, Ma Y (2012) Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res 46:2737–2748. doi:10.1016/j.watres.2012.02.033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cheng Qian
    • 1
  • Xiong Wu
    • 1
  • Wen-Ping Mu
    • 2
  • Rui-Zhi Fu
    • 1
  • Ge Zhu
    • 1
  • Zhuo-Ran Wang
    • 1
  • Dan-dan Wang
    • 1
  1. 1.School of Water Resources and EnvironmentChina University of GeosciencesBeijingChina
  2. 2.College of Geoscience and Surveying EngineeringChina University of Mining and TechnologyBeijingChina

Personalised recommendations